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a b s t r a c t

In theoretical studies, the most commonly used measure of ecological stability is resilience: ecosystems
asymptotic rate of return to equilibrium after a pulse-perturbation -or shock. A complementary notion of
growing popularity is reactivity: the strongest initial response to shocks. On the other hand, empirical
stability is often quantified as the inverse of temporal variability, directly estimated on data, and
reflecting ecosystems response to persistent and erratic environmental disturbances. It is unclear whe-
ther and how this empirical measure is related to resilience and reactivity. Here, we establish a con-
nection by introducing two variability-based stability measures belonging to the theoretical realm of
resilience and reactivity. We call them intrinsic, stochastic and deterministic invariability; respectively
defined as the inverse of the strongest stationary response to white-noise and to single-frequency per-
turbations. We prove that they predict ecosystems worst response to broad classes of disturbances,
including realistic models of environmental fluctuations. We show that they are intermediate measures
between resilience and reactivity and that, although defined with respect to persistent perturbations,
they can be related to the whole transient regime following a shock, making them more integrative
notions than reactivity and resilience. We argue that invariability measures constitute a stepping stone,
and discuss the challenges ahead to further unify theoretical and empirical approaches to stability.

& 2015 Elsevier Ltd. All rights reserved.
1. Introduction

What determines the stability of ecosystems has been a driving
question throughout the history of ecology (May, 1973a; Pimm,
1984; McCann, 2000; Loreau and de Mazancourt, 2013). Numerous
hypotheses have been proposed, explored theoretically and tested
empirically. However, the preliminary question of how to quantify
stability has received less attention. Many measures of ecological
stability exist, but the choice between them is often made on
is.cnrs.fr (J.-F. Arnoldi).
ancois-arnoldi.html
purely pragmatic grounds. As a consequence, results of stability
studies are often difficult to compare, because it is not clear how
much these results depend on the specific choice of stability
measure. In this context, clarifying the relationships and the dif-
ferences between measures would be very useful.

When attempting such a clarification, one is easily overwhelmed
by the vast range of regularly used stability measures. Therefore, we
start by restricting the setting in which we consider the problem of
quantifying ecological stability. First of all, we limit our attention to
ecological systems whose dynamics tend to an equilibrium point.
Although it might be restrictive from an empirical viewpoint, this
assumption is common in theoretical studies of ecological stability
(e.g., Neutel et al., 2002; Rooney et al., 2006; Thébault and Fontaine,
2010; Allesina and Tang, 2012). Indeed, this assumption allows to
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introduce a substantial simplification. By focusing on the dynamics
close the equilibrium point, the system can be linearized. We
assume that the equilibrium point is stable, that is, every trajec-
tories of the linear system eventually reaches the equilibrium point.
We are then interested in quantifying the degree of stability of the
linear dynamics.

Even in the simple setting of linear dynamics in the vicinity of
an equilibrium point, there is a multitude of stability measures.
Typically, these measures are based on the system response to a
particular perturbation (Fig. 1). The larger the intensity or the
duration of the response, the less stable the system. The classical
stability theory (May, 1973a) is largely based on the concept of
asymptotic resilience R1. It is defined as the asymptotic (t-1)
rate of return to equilibrium after a displacement. The displace-
ment does not have to decay at this asymptotic rate right away. It
might even be amplified before eventually approaching equili-
brium, as captured by the notion of reactivity: the strongest initial
(t¼0) amplification of a displacement (Neubert and Caswell,
1997). To deduce a measure of stability, we simply define initial
resilience R0 as the opposite of reactivity (i.e., same absolute value
but opposite sign). Both resilience measures are exclusively
determined by the system intrinsic dynamics.

On the other hand, most empirical studies quantify stability as
the inverse of temporal variability, directly estimated on time-
series data. (Tilman et al., 2006; Jiang and Pu, 2009; Campbell
et al., 2011; Donohue et al., 2013). Although theoretical studies
have also considered stability measures based on variability (Ives
et al., 1999; Lehman and Tilman, 2000; Loreau and de Mazancourt,
2008), the link with resilience is not obvious. Indeed, in contrast
with resilience, variability is caused by persistent perturbations,
depends on the direction and intensity of these perturbations, and
on the ecosystem variable that is observed, such as total biomass.
Fig. 1. Four measures of ecological stability. Stability can be quantified by applying a per
measuring its response (right graphs; curves can be interpreted as biomass changes of
worst-case system response for a specific class of perturbations. Asymptotic resilience R
Initial resilience R0 is the slowest initial recovery rate. Intrinsic stochastic invariability I
perturbations. Intrinsic deterministic invariability ID is the inverse of the amplitude of t
these four measures are comparable, despite the different classes of perturbations cons
As a first step in attempting to bridge the gap between
empirical and theoretical measures, we define two theoretical
measures of invariability (Fig. 1):

� Intrinsic stochastic invariability IS constructed from the sta-
tionary response of ecosystems to stochastic perturbations of
zero-mean and persisting through time. A linear system that is
perturbed by a white-noise signal eventually exhibits Gaussian
fluctuations (Arnold, 1974). The larger the variance of the
stationary response, the less stable the system. We use the
inverse of this variance to define stochastic invariability IS (but
see Section 3 for a precise definition). Stochastic white-noise
perturbations are popular in ecological studies as they are
considered a simple model of environmental fluctuations
(May, 1973b; Ives et al., 1999; Loreau and de Mazancourt, 2008).

� Intrinsic deterministic invariability ID constructed from the sta-
tionary response of ecosystems to zero-mean periodic pertur-
bations that persist through time. A linear system that is
perturbed by a periodic signal eventually oscillates at the same
frequency as the driving signal (Ritger and Rose, 1968). The
larger the amplitude of the stationary response, the less stable
the system. We use the inverse of this amplitude to define
deterministic invariability ID (but see Section 4 for a precise
definition). Periodic perturbations have been used in ecological
studies (Nisbet and Gurney, 1976; King and Schaffer, 1999), and
capture fundamental properties of linear systems.

Although defined for two very specific classes of perturbations, we
show that the inverse of these two measures predicts ecosystems
maximal response to much broader sets of disturbances: shocks
occurring without temporal correlation for IS, and stationary
perturbations with possibly long-term correlations for ID. This
turbation (left graphs) to a system (here represented by community matrix A) and
two species through time). Each stability measure we consider corresponds to the
1 is the slowest asymptotic rate of return to equilibrium after a pulse perturbation.
S is inversely proportional to the variance of the maximal response to white-noise
he maximal response to single-frequency perturbations. In this paper we show that
idered.
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first result makes the two invariability measures complementary
and easy to interpret.

By considering maximal responses over specific classes of dis-
turbances, we have stripped several dependencies from the
variability-based stability measures: they do no longer depend on
direction and intensity of the applied perturbation, nor on a choice
of observation variable. Hence, the resulting invariability measures
IS and ID are exclusively determined by the system intrinsic
dynamics. Because the two resilience measures R1 and R0 are also
intrinsic, the four stability measures can be compared. We show
that the following chain of inequalities holds in full generality:

R0rISrIDrR1;

meaning that, for any given system, initial resilience gives the
lowest value of stability, whereas asymptotic resilience always
attributes the highest. For systems with particular symmetry
properties, the four measures coincide. However, this should not
lead to the conclusion that the stability measures are essentially
equivalent. In fact, we provide simple examples for which measures
differ by orders of magnitude.

Finally, we explain that, although defined with respect to per-
sistent perturbations, invariability measures relate to the whole
transient regime following a single shock. In contrast, resilience
measures only focus on specific short-term and asymptotically
long-term responses, indicating that they are less integrative
notions of ecological stability.
2. Resilience measures

Before introducing invariability, we first describe the theore-
tical setting of intrinsic stability measures. We give the definitions
of the classical notions of resilience (initial and asymptotic) and
comment on some basic properties. We refer to Appendix A for the
mathematical notations used throughout the paper.

Consider a non-linear dynamical system in continuous time. It
may describe, for example, a spatially structured population, a
competitive community, species interacting in a food web, or
abiotic and biotic flows in an ecosystem model. For convenience of
speech, we shall use the terminology of a community of inter-
acting species. In this case, the dynamical variables correspond to
species abundances or biomass, and the dynamical system
describes how these abundances or biomass change over time
through species interactions. We assume there are S dynamical
variables, and represent these variables as a vector NðtÞ. The
dynamical system is described by a set of coupled differential
equations, dN=dt ¼ f ðNÞ. We assume these equations admit an
equilibrium point Nn, so that f ðNnÞ ¼ 0. The local dynamics in the
vicinity of Nn are characterized by a matrix A¼Df ðNnÞ, the Jaco-
bian of the dynamical equations evaluated at the equilibrium. For
interacting species, this matrix is called community matrix.
Denoting by xðtÞ ¼NðtÞ�Nn the displacement from equilibrium,
the local dynamics are well approximated by a linear dynamical
system:

dx=dt ¼ Ax: ð1Þ
Nn is locally stable if and only if all eigenvalues of A have negative
real part. Stability measures quantify the degree of stability of an
equilibrium. The most common such measure is asymptotic resi-
lience, that we now describe.

2.1. Asymptotic resilience

The term resilience is used with different meanings in the
ecological literature. We use resilience as the rate of return to
equilibrium, as is common in many studies of ecological stability
(Pimm, 1991). In contrast, the definition of Holling (1973) is based
on the size of the basin of attraction of the equilibrium in question.
While the latter notion is a characteristic of the non-linear
dynamics, in this paper we only focus on local stability proper-
ties, encoded in the linear system (1). We thus assume that under
perturbations the dynamical variables remain within the basin of
attraction.

Asymptotic resilience quantifies local stability as the long-term
rate of return to equilibrium. Let us assume that at time t¼0 a
shock displaces the system to xð0Þ ¼ x0. In the linear approxima-
tion, the relative abundances x evolve according to (1), the solu-
tion of which is given by xðtÞ ¼ etAx0. If the equilibrium is stable,
any trajectory eventually leads back to it. Using the norm JxJ to
measure Euclidean distance in phase space, the asymptotic rate of
return to equilibrium reads

� lim
t-1

1
t
ln‖xðtÞ‖¼ � lim

t-1
1
t
ln etAx0
�� ��:

This expression depends on the initial displacement x0. To get an
intrinsic stability measure, i.e., a measure that depends only on the
community matrix A, we consider the slowest asymptotic rate of
return over all initial displacements x0:

R1 ¼ inf
Jx0 J ¼ 1

� lim
t-1

1
t
ln etAx0
�� ��� �

¼ � lim
t-1

1
t
lnJetA J :

This equation defines an intrinsic stability measure, called
asymptotic resilience. The faster the system returns to equilibrium,
the more stable it is. In fact, trajectories will generically converge
to the direction spanned by the eigenvector associated to the
eigenvalue with largest real part, λdomðAÞ, which limits the return
to equilibrium (Fig. 2). It follows that asymptotic resilience can be
computed from this dominant eigenvalue, λdomðAÞ, as
R1 ¼ �R λdomðAÞ

� �
; ð2Þ

where RðλÞ is the real part of the complex number λ. If R1 is
negative, some trajectories indefinitely move away. Hence, R1
must be positive for the equilibrium to be stable. We shall some-
times refer to the eigenvector associated to λdom as slow, or
dominant, eigenvector spanning the direction of slowest return to
equilibrium, towards which most trajectories converge to (note
that in discrete-time dynamics, it is the eigenvalue with maximal
modulus, and the associated eigenvector, that asymptotically
dominate the dynamics).

The definition of asymptotic resilience is illustrated in Fig. 2. For a
community of S¼2 species, we plot three trajectories in the plane
ðx1; x2Þ (left panel). The three trajectories have different initial con-
ditions, corresponding to different initial displacements. After a suf-
ficiently long time, the distance to equilibrium decays at a fixed
exponential rate (right panel; note the logarithmic scale on the
y-axis). This rate is the same for the three trajectories, equal to R1.

Asymptotic resilience is the most commonly used stability
measure in theoretical ecology (e.g., May, 1973a; Pimm, 1991;
Neutel et al., 2002; Rooney et al., 2006; Thébault and Fontaine,
2010). Note that the inverse of R1 has the dimension of time,
which is often interpreted as a characteristic return time to
equilibrium.

2.2. Initial resilience

Asymptotic resilience characterizes the long-term response to a
single shock. However, as illustrated in Fig. 2, it is not necessarily
related to the short-term response. In particular, not all displace-
ments instantly decay at the same rate. Some displacements can
even grow before eventually decaying. When such displacements
exist, the system is said to be reactive. Neubert and Caswell (1997)
defined reactivity as the strongest initial amplification of an
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instantaneous displacement. We define initial resilience R0 as the
opposite of reactivity, that is:

R0 ¼ inf
Jx0 J ¼ 1

� d
dt

etAx0
�� ������

t ¼ 0

� �
¼ � d

dt
etA
�� ������

t ¼ 0
: ð3Þ

Initial resilience is positive when the system is non-reactive. In
this case, the larger R0, the faster the system initially evolves
towards equilibrium, the more stable the system (Tang and Alle-
sina, 2014; Suweis et al., 2015). As for asymptotic resilience, R0 is
an intrinsic stability measure, i.e., it depends only on the com-
munity matrix A. It can be computed as the opposite of the
dominant eigenvalue of the symmetric part ðAþA> Þ=2 of A (A> is
the transpose of A):

R0 ¼ �1
2 λdomðAþA> Þ: ð4Þ

The definition of initial resilience is illustrated in Fig. 2. The three
trajectories have different initial amplification, as can be seen from
the initial slopes of the curves in the right panel. For one of them
(shown in blue), the slope is positive, meaning that the system is
reactive. In fact, this trajectory has the largest slope of all initial
displacements, so that initial resilience is equal to the opposite of
this slope.

The similarity of (2) and (4) shows that asymptotic and initial
resilience are equal for certain matrices A. In particular, if A is
symmetric, i.e., if A¼ A> , then the symmetric part ðAþA> Þ=2¼ A,
and R0 ¼R1. More generally, this equality holds for normal
matrices satisfying AA> ¼ A>A (Trefethen and Embree, 2005).
However, non-normality does not imply that R0aR1 – see (A.4)
in Appendix A. In the following, we call a matrix A relatively
reactive if R0aR1. Note that a matrix is relatively reactive if it is
reactive. On the other hand, a relatively reactive matrix need not
be reactive. Hence, reactivity implies relative reactivity but relative
reactivity does not imply reactivity.

We give a geometric intuition about relative reactivity (Snyder,
2010). Normal matrices, which are not relatively reactive, are char-
acterized by the property of having orthogonal eigenvectors. One can
think of relative reactivity as being caused by the non-orthogonality
Fig. 2. Definition of asymptotic and initial resilience. The community matrix A¼ �1
0:1

2:5
�1

�
equilibrium. We have R1 ¼ 0:5 and R0 ¼ �0:3, indicating that the system is reactive
equilibrium (and their mirror image). They represent the system response to various
represented in black. Right panel: plot of JxðtÞJ with logarithmic scale on y-axis. The
distance to equilibrium of all trajectories starting at distance one. It is computed as the
slowest asymptotic rate of return (slope for large time in right panel). Note that a dis
asymptotic slope, corresponding to the real part of the sub-dominant eigenvalue. Initial
slope at t ¼ 0 in right panel). Initial resilience can be negative, as in the example shown
initial displacement is amplified. (For interpretation of the references to color in this fig
of the eigenvectors. This is visible in the left panel of Fig. 2, repre-
senting trajectories in the plane ðx1; x2Þ. Because the two eigenvec-
tors are close to being collinear, some trajectories are dragged along
the “fast direction” (associated to the non-dominant eigenvalue). By
doing so, these trajectories move away from the equilibrium while
converging to the “slow direction” (associated to the dominant
eigenvalue).

By construction, initial and asymptotic resilience are two
extreme characteristics of the system recovery regime from a
shock (pulse perturbation). The whole transient leading back to
equilibrium cannot be expected, in general, to be fully described
by the two measures of resilience. This suggests that there is room
for intermediate measures of stability, taking into account the
integrality of the transient. As we shall see in the following
asections, measures of temporal invariability do just that.
3. Intrinsic stochastic invariability

Dynamical stability relates to the ability of a system to absorb
perturbations. To define resilience, we considered single shocks (or
pulse perturbations), but these are only one type of disturbances
that can be applied to the system. In fact, a simple way to model
fluctuations observed on time series data is to see them as the effect
of persistent environmental disturbances. In this approach, the
stable equilibrium of (1) is replaced by the stationary response to
those environmental perturbations. To define intrinsic stochastic
invariability IS, we consider a specific class of stochastic dis-
turbances, namely, white-noise perturbations, assuming that the
environment fluctuates randomly and without memory.

Mathematically, white noise is described as the “derivative” of
Brownian motion, the continuous-time version of a random walk.
To construct a Brownian motion, it is convenient to consider
infinitesimal time steps, tk ¼ kδt-tkþ1 ¼ ðkþ1Þδt, of length δt. At
each time tk, a displacement is drawn from a Gaussian distribution
of zero mean and variance δt. In the continuous-time limit δt-0,
this defines a Brownian motionW(t). One defines its derivative ξðtÞ
�
models a mutualistic community with asymmetric interactions (A12aA21), near

. We show three trajectories (green, red, blue) starting at unit distance from the
normalized shocks. Left panel: plot in phase plane ðx1 ; x2Þ, with the eigenvectors
dashed curve represents the amplification envelope, meaning the envelope of the
spectral norm of etA (in log scale on right panel). Asymptotic resilience R1 is the

placement along the fast direction (a non-generic shock) would present a steeper
resilience R0 is the slowest initial rate of return to equilibrium (opposite of largest
here, meaning that there exist trajectories (for example, the blue one) for which the
ure caption, the reader is referred to the web version of this paper.)



Fig. 3. Definition of intrinsic stochastic invariability. (Top) White noise is applied to
the system. It can be seen as a continuous successions of normally distributed
(infinitesimal) shocks, characterized by a covariance matrix Σ. The response of the
system to white noise is continuous, and normally distributed in phase plane, with
covariance matrix Cn ¼ � Â

�1ðΣÞ. The variability of the response is measured as the
Frobenius norm of this matrix. (Bottom) To get an intrinsic measure, we look for the
worst-case scenario, i.e., the input matrix Σ generating the maximal variability.
However, we show that the maximal response can be computed without having to
solve an optimization problem. To get stochastic variability VS, it suffices to com-
pute the spectral norm of Â

�1
. Stochastic invariability IS is then defined as half of

the inverse of VS.
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as the stochastic signal satisfying WðtÞ ¼ R t
0 ξðsÞ ds, which is often

written as dWðtÞ ¼ ξðtÞ dt. The signal ξðtÞ is called white noise,
because all frequency components have the same expected value
(Van Kampen, 1997).

We apply this type of perturbation to system (1), assuming that
R environmental factors act on the community. These factors r¼1,
…,R are modeled by mutually independent white-noise signals
dWr(t). The effect of environmental factor r on species i is descri-
bed by a coefficient Tir. Explicitly, writing XiðtÞ ¼NiðtÞ�Nn

i , the
dynamics read dXi ¼

PS
j ¼ 1 AijXjðtÞ dtþ

PR
k ¼ 1 Tik dWkðtÞ. Using

X ¼ X1;…;XSð Þ> , they take the compact vector form

dX ¼ AX dtþT dWðtÞ; ð5Þ
with W ¼ W1;…;WRð Þ> a collection of independent Brownian
motions. Note that species abundances Xi must now be seen as
random variables.

We focus on the stationary state Xn of (5). It has Gaussian
distribution centered at the equilibrium point. The associated
stationary covariance matrix Cn ¼ E XnX >

n

� �
is the solution of the

Lyapunov equation (Arnold, 1974), Â Cnð ÞþΣ ¼ 0, with Σ ¼ TT >

and where the operator Â acts on any matrix C as ÂðCÞ ¼ ACþCA> .
With these notations, the stationary covariance matrix reads

Cn ¼ � Â
�1ðΣÞ: ð6Þ

As for the deterministic approach, to construct an intrinsic
stability measure, we seek for the perturbation that will generate
the largest response. Concretely, we look for the perturbation
covariance matrix Σ that maximizes the norm of the response
covariance matrix Cn. There are many ways to assign a norm to a
matrix. For our purposes, the most convenient choice turns out to

be the Frobenius norm JΣ JF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TrðΣ >ΣÞ

q
, which amounts to

viewing a matrix as a vector and taking its Euclidian norm (but see
Appendix D for a different choice). We then define stochastic
variability with respect to the Frobenius norm as the largest sta-
tionary covariance matrix over all normalized perturbations:

VS ¼ sup
ΣZ0; JΣ J F ¼ 1

� Â
�1ðΣÞ

��� ���
F
: ð7Þ

Finally, we define intrinsic stochastic invariability IS as
IS ¼ 1=ð2VSÞ. The use of the arbitrary factor 1/2 in this definition
will become clear below.

It turns out that the supremum in (7) without the restriction
ΣZ0, i.e., without requiring that Σ is a covariance matrix, gives
the same result (Watrous, 2005). Hence,

VS ¼ sup
JΣ J F ¼ 1

� Â
�1ðΣÞ

��� ���
F
¼ Â

�1��� ���; ð8Þ

where the norm in the last expression is the spectral norm on the
space of linear operators (see Appendix A). This gives an efficient
way to evaluate stochastic invariability. Indeed, one can see Â as a
larger matrix A � IþI � A, where I is the identity matrix and �
stands for the tensor product. To compute (8), it suffices to eval-
uate the spectral norm of the inverse of A � IþI � A. The defini-
tion of IS is illustrated in Fig. 3.

Stochastic invariability is defined with respect to white-noise
perturbations. However, we can see white noise as a specific
representative of a broad class of disturbances that yield the same
definition of invariability. It is the set of uncorrelated shocks
constructed as random sequences of instantaneous displacements
occurring randomly in time. We make this claim precise in
Appendix B. This shows that stochastic variability can be inter-
preted more generally as the maximal system response to a per-
sistent sequence of shocks, either of infinitesimal intensity but
occurring at all times, or of finite intensity but occurring at random
instants. The latter can be more appropriate to describe certain
ecological perturbations, such as drought events, wildfires or dis-
ease outbreaks.
4. Intrinsic deterministic invariability

In the previous section, and as if often done in theoretical
studies, we modeled environmental perturbations as uncorrelated
shocks. We now assume the converse, that is, we suppose the
environment to be fully correlated in time. As extreme repre-
sentatives of such disturbances we consider single-frequency
periodic functions. Based on this type of perturbations, we con-
struct our last stability measure: intrinsic deterministic invaria-
bility ID.

We introduce deterministic environmental fluctuations f ðtÞ in the
linear dynamical as dx=dt ¼ Axþ f ðtÞ. We assume a single-frequency
periodic forcing, f ðtÞ ¼R eiωtu

� �¼ cos ðωtÞRðuÞ� sin ðωtÞIðuÞ,
whereω is the forcing frequency, u is the direction of the perturbation,
and RðuÞ (resp. IðuÞ) stands for the real part (resp. imaginary part) of
the complex vector u. The perturbed dynamical system becomes
dx=dt ¼ AxþR eiωtu

� �
. The stationary system response reads

xðω; tÞ ¼R eiωtv
	 


with v¼ iω�Að Þ�1u: ð9Þ

We use the norm JvJ as a measure of the system response to the
forcing. More explicitly, 12JvJ

2 is the mean square distance to equili-

brium, 12 JvJ
2 ¼ limT-1

1
T
R T
0 Jxðω; tÞJ2 dt.



Fig. 4. Definition of intrinsic deterministic invariability. (Top) A periodic perturbation
of frequency ω is applied to the system. In phase space the perturbation defines an
ellipse characterized by a complex vector u. The system response oscillates a the
same frequency along an ellipse characterized by the complex vector
v¼ ðiω�AÞ�1u. The variability of the response is measured as the norm of v.
(Middle) We then look for the maximal response over all input vectors u, giving the
frequency response. We get the frequency response without having to solve an
optimization problem, by simply computing the spectral norm of ðiω�AÞ�1. (Bot-
tom) We search for the resonant frequency, giving deterministic variability as the
maximal frequency response: VD ¼ supω J ðiω�AÞ�1 J . Its inverse is deterministic
invariability ID.

J.-F. Arnoldi et al. / Journal of Theoretical Biology 389 (2016) 47–5952
For a given frequency ω, the largest system response over all
normalized perturbation vectors u is

sup
Ju J ¼ 1

J ðiω�AÞ�1uJ ¼ J ðiω�AÞ�1 J ; ð10Þ

where we have used the definition of the spectral norm of a matrix
(see Appendix A). We call J ðiω�AÞ�1 J the system's frequency
response. We look for the frequency ω that maximizes the fre-
quency response, which we call the resonant frequency. The fre-
quency response at the resonant frequency,

VD ¼ sup
ωAR

J iω�Að Þ�1 J ; ð11Þ

is an intrinsic quantity, i.e., it depends only on the community
matrix A and represents the maximal amplitude gain over all
single-frequency periodic signals. We call VD deterministic varia-
bility. Its inverse defines an intrinsic stability measure, ID ¼ 1=VD,
which we call intrinsic deterministic invariability. The definition of
ID is illustrated in Fig. 4.

Quite generally, any deterministic signal can be developed into
a sum of harmonic terms, or Fourier modes, of the form R eiωtu

� �
.

In the linear approximation, the system response to this general
perturbation is equal to the sum of the system response to the
single-frequency modes. Then, it follows from a convexity argu-
ment that the perturbation generating the largest system response
is a single-frequency mode. Hence, when searching for the worst
deterministic forcing, it suffices to consider single-frequency per-
turbations, as we have done in defining deterministic invariability.

We make this argument rigorous in Appendix C and extend it to
a large class of stationary perturbations. We relax the deterministic
and periodic assumption on the environmental forcing, allowing
the perturbation to be picked at random from a set of deterministic
ones, that need not be periodic or even continuous. We only require
that, on average (i.e., over all possible realizations), the perturbation
is null, and that, again on average, its temporal autocorrelation is
finite and stationary. In the language of signal analysis, such signals
are called wide-sense stationary, and their maximal temporal
autocorrelation defines their power. When comparing the output
signal (the system response) to the input signal (the perturbation),
we show that deterministic variability is the maximal power gain
over all such stationary signals.

As noted by Ripa and Ives (2003), the effect of environmental
autocorrelation can be large and unintuitive. An important feature
of deterministic invariability is its ability to encompass – in a
single number – the potentiality of such effects (as long as the
system remains in a vicinity of its equilibrium).
5. Comparison of stability measures

In Section 2 we introduced two commonly used measures of
local stability, asymptotic and initial resilience (R1 and R0). In
Sections 3 and 4 we introduced stochastic and deterministic
invariability (IS and ID) and explained why they are more closely
related to empirical measures – see Table 1. Here we establish
general relationships between resilience and invariability
measures.

We start by considering the simplest case: one-dimensional
stable equilibrium. In the vicinity of the equilibrium, the dynamics
read dx=dt ¼ �ax, with a40. Note that, in this case, the matrix A
is scalar, A¼ �a. To compute resilience measures R1 and R0, we
use that, starting from x0, the variable x evolves as xðtÞ ¼ x0e�at .
This implies that

R1 ¼R0 ¼ a:

To compute stochastic invariability IS, we must solve the
aLyapunov Eq. (6), with Cn ¼ EðX2

n
Þ the variance of the stationary
state Xn associated to a stochastic forcing σ2 dWðtÞ. It simply
reads ð�aÞCnþCnð�aÞþσ2 ¼ 0; so that Cn ¼ σ2=ð2aÞ. For a nor-
malized noise variance this gives VS ¼ 1=ð2aÞ and
IS ¼ 1=ð2VSÞ ¼ a:

Finally, to compute deterministic invariability ID, we must solve
(11). Here this formula takes the simple form of

VD ¼ sup
ωAR

ðiωþaÞ�1
��� ���¼ sup

ωAR

ðω2þa2Þ�1=2 ¼ a�1 ) ID ¼ a:

Note that the maximal frequency response is attained at ω¼ 0,
indicating that the perturbation with largest effect is a press
perturbation, i.e., a perturbation that is constant in time. Hence,
we find that for one-dimensional dynamics, the four stability
measures coincide. This result suggest that, although at first sight
their definitions are unrelated, the values of the stability mea-
sures can be expected to satisfy general relationships. Remark
that, as a corollary, we have established that the stability mea-
sures are expressed in the same units (reciprocal time), so that
their values can be compared. Also, note that this simple com-
putation justifies the presence of the factor 1/2 in the definition
of IS. Without this factor, stochastic invariability would be twice
as large as the other stability measures.



Fig. 5. Illustration of the general stability ordering (12) on random matrices of dimension
while off-diagonal elements were drawn from a normal distribution of mean 0 and varian
four stability measures against each other for 1000 stable matrices (each red dot correspo
reactive matrices; dots lying below the dashed black line (top row panels) correspond to
the reader is referred to the web version of this paper.)

Table 1
Computing intrinsic measures of stability. The two resilience measures are well
known, while the two invariability measures are new. All four measures are defined
with respect to the worst system response over different types of perturbations.
They are expressed in the same units (reciprocal time) and can be computed
directly from the community matrix A.

Stability measure Interpretation Formula

Asymptotic
resilience

Slowest asympt. rate of
return to equilibrium after
a shock

R1 ¼ �RðλdomðAÞÞa

Deterministic
invariability

Inverse of maximal
response amplitude to
periodic forcing

ID ¼ ðsupω J ðiω�AÞ�1 J Þ�1b

Stochastic
invariability

Inverse of maximal
response variance to
white-noise

IS ¼
1
2
J� Â

�1
J �1c

Initial resilience Slowest initial rate of
return to equilibrium after
a shock

R0 ¼ �1
2
λdomðAþA> Þd

a λdom is the eigenvalue of community matrix A with maximal real part RðλdomÞ.
b i is the imaginary unit and ωZ0. J � J is the spectral norm of matrices.
c Â ¼ A � IþI � A where I is the identity matrix; � is the Kronecker

product.
d A> is the transpose of A.
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Equality remains for normal matrices, such as symmetric ðAij ¼ AjiÞ
and skew-symmetric ðAij ¼ �Aji; ia jÞ matrices. The case Aij ¼ Ajio0
corresponds to symmetric competitive interactions, i.e., species i
affects species j as much as species j affects species i. Symmetric
community matrices have been considered in previous stability stu-
dies (Ives et al., 1999; Loreau and de Mazancourt, 2008). The case Aij

¼ Aji40 corresponds to symmetric mutualistic interactions, con-
sidered for instance by Bastolla et al. (2009). Finally, skew symmetric
matrices corresponds to symmetric antagonistic interactions (e.g.,
predator–prey or host–parasitoid interactions) in which the positive
effect of prey species j on predator species i is equal (in magnitude) to
the negative effect of predator species i on prey species j. Such
matrices have been considered in theoretical studies of food webs
(Moore and de Ruiter, 2012).

The equality of the stability measures in the normal case can be
understood intuitively (but see Appendix A where we explain why
normal matrices cannot be relatively reactive). For normal matrices,
the eigenvectors are orthogonal and can thus be seen as co-operating
forces dragging trajectories back to equilibrium. Consequently,
dynamics along the direction spanned by the “slowest” eigenvector
(associated to asymptotic resilience) contain all of the stability lim-
iting features, such as most reactive, most sensitive, and also largest
associated response direction. In other words, when looking for
intrinsic stability measures, one can simply reduce a normal system
to a one-dimensional one along the direction spanned by its
S¼3. The diagonal elements were drawn from a uniform distribution over ½�1;0�
ce 1. With this procedure 63% of the matrices generated were stable. We plotted all
nds to a stable matrix). Dots lying below the full black lines correspond to relatively
reactive matrices. (For interpretation of the references to color in this figure caption,



Table 2
Intrinsic measures of invariability as a stepping stone between purely theoretical and
empirically motivated notions of stability. Different classes of stability measures are
compared based on whether the system response to pulse or persistent pertur-
bations is considered (i); whether the measures depend on the intensity and
direction of the applied perturbation (ii); and whether the system response is
measured on a specific variable -such as total biomass (iii). A large part of ecological
theory uses intrinsic stability measures associated to pulse perturbations (like
asymptotic and initial resilience; column “asympt/initial resilience”). There also
exists a rather disconnected theory of ecological variability, based on non-intrinsic
variability measures and persistent perturbations (column “existing theory of
variability”). In this paper we bridge these two approaches by introducing intrinsic
invariability measures (column “intrinsic invariability”).

Characteristics of
measures

Asympt/initial
resilience

Existing theory
of variability

Intrinsic
invariability

(i) Type of perturbation Pulse Persistent Persistent
(ii) Depends on pertur-

bation features
No Yes No

(iii) Associated to an
observed variable

No Yes no
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dominant eigenvector. Since stability measures coincide for one-
dimensional systems, they will coincide in the normal case.

For non-normal matrices, equality of stability measures no
longer holds in general. However, the measures are always ordered
according to

R0rISrIDrR1; ð12Þ
as proved in Appendix E and illustrated in Fig. 5. It means that, for
any given system, initial resilience gives the lowest value of sta-
bility, whereas asymptotic resilience always attributes the highest.
Notice that the general ordering (12) collapses into an equality if
R0 ¼R1, i.e., whenever the community matrix is not relatively
reactive.

To illustrate the potential differences between measures, and to
gain insight into the mechanisms that can cause these differences,
we represent in Fig. 6 the behavior of stability measures for two
sequences of community matrices gradually departing from nor-
mality. On the left panel are represented the stability measures of
a sequence of competitive communities near equilibrium. Species
2 has negative impact on species 1, yet species 1 has no effect on
species 2 (an amensalistic interaction). As the asymmetry of the
interaction grows, asymptotic resilience remains unchanged while
other measures decrease. For large enough asymmetry, asymptotic
resilience is one order of magnitude larger than invariability
measures. On the right panel of Fig. 6 the matrices model a
consumer-resource system near equilibrium, with the consumer
depleting, for a fixed benefit, an increasing amount of resource,
while increasing its tendency to return to equilibrium. In this
artificial example, the stability trend along the gradient appears to
be ambiguous. Indeed, as the interaction asymmetry grows,
asymptotic resilience increases while other measures indicate a
sharp loss of stability. We notice in both examples that systems
become reactive (i.e., R0o0) while remaining relatively stable
with respect to other measures.

All measures can be expressed as characteristics of the transient
regime following a shock and leading back to equilibrium. This
claim might seem surprising, as invariability measures are defined
with respect to persistent disturbances and not to pulse perturba-
tions. To reveal this link, notice that an external forcing, either
deterministic or stochastic, constantly pushes the system away from
equilibrium and can be seen as a sequence of pulse perturbations.
Fig. 6. Branching of stability measures as interaction asymmetry increases. Left panel: t
librium, with one of them having negative impact on the other. As interaction asymmet

the other measures drop. At ρ¼ 6 asymptotic resilience is one order of magnitude larg

consumer-resource system near equilibrium, with the consumer depleting, for a fixed b
increases while other measures show a loss of stability. We observe that in both examp
The system stationary response is, at each time, the sum of the
responses to all past perturbations. Hence, invariability measures
are sensitive to short-term responses, long-term ones, and all in
between; in other words, to the whole transient regime leading
back to equilibrium. The envelope of the distance to equilibrium of
all trajectories (associated to all normalized shocks that can be
applied to the system) defines the so-called amplification envelope
(see Fig. 2). This suggests a link between invariability measures and
the integral of the amplification envelope (see Appendix D). By
definition, initial and asymptotic resilience relate to the head and
tail of this envelope. When the transient is completely determined
by asymptotic resilience, stability measures coincide, but in general,
neither initial nor asymptotic resilience fully characterize the tran-
sient, hence stability measures differ.

The above reasoning also sheds light on the reasons why
measures are ordered according to (12). First of all, to understand
why R0 is smaller than R1, it suffices to notice that the initial
decay of a displacement along the dominant eigenvector of the
community matrix is precisely given by asymptotic resilience. Since
initial resilience corresponds to the worst-case scenario, it can only
be smaller. A similar argument applies for other measures, by
he community matrix A¼ �1
0

�ρ
�1

� �
models the dynamics of two species near equi-

ry -parametrized by ρZ0� grows, asymptotic resilience remains unchanged while

er than stochastic invariability. Right panel: the matrix A¼ �1
1

�ð1þρÞ2
�
ffiffiffiffiffiffiffiffi
1þρ

p
� �

models a

enefit, a growing amount of resource. As asymmetry grows, asymptotic resilience
les, the system becomes reactive (R0o0) at low asymmetry.
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Fig. 7. Worst-case vs generic perturbations. For the community matrix A¼ �1
0

2
�2

� �
, we investigate the system response to random perturbations and compare with the worst-

case scenario. In each panel, the vertical thick line represents the intrinsic stability measure, i.e., the system response corresponding to the worst-case scenario, over the
defining set of perturbations associated to that measure. The histogram represents the distribution of the system response to a perturbation randomly sampled from the
defining set. For resilience measures (left- and rightmost panel), we generated 1000 initial displacements, drawn uniformly on the unit sphere around equilibrium. For
stochastic invariability (second panel), we generated 1000 random matrices T of independent Gaussian variables, and constructed white-noise covariance matrices by
normalizing Σ ¼ TT > (Wishart distribution). For deterministic invariability (third panel), we generated 1000 random press perturbations (i.e., of frequency ω¼ 0, which is
the resonant frequency of this system), uniformly distributed on the sphere. Only asymptotic resilience is generic, as all asymptotic return rates equal R1 . For other
measures, the worst-case response can be very different from the response to a particular perturbation.
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considering perturbations along the dominant eigenvector. In the
case of persistent disturbances, the system stationary response is,
at each time, the sum of the responses to all past displacements. All
these displacements are dragged towards the dominant eigenvalue,
thus their absorption rate changes until reaching the decay rate
predicted by R1. The resultant response is thus always smaller
than if all displacements were only absorbed at the minimal initial
rate R0, which implies that variabilities are smaller than the
inverse of R0. This explains why invariability measures are framed
by resilience measures.

The fact that ISrID is less intuitive, and specific to the nor-
malization choices we have made. We stress that it should not be
interpreted as if uncorrelated shocks generate larger variability
than autocorrelated fluctuations. The white-noise normalization
chosen to define stochastic variability focuses on the variance of
the displacements induced by shocks and not on the variance of
the signal itself, which is infinite. Yet, uncorrelated shocks gen-
erate a system response with finite variance. In terms of gain of
variance uncorrelated shocks are thus far less efficient in exciting
the system than autocorrelated signals.

Finally, it is worth noting that there is no biological reason why
community matrices representing biological systems should be
normal, or simply not relatively reactive. In fact, it has been
established that many natural systems are reactive (Neubert and
Caswell, 1997; Neubert et al., 2004, 2009). Since reactivity is a
stronger condition than relative reactivity, which in turn is a
stronger condition than non-normality, this suggest that most
natural systems are non-normal and relatively reactive. We have
explained that, in this case, stability measures can largely differ.
This advocates for a more integrative approach to local stability,
that does not simply focus on asymptotic resilience.
6. Discussion

Ecological stability theory is largely based on the response of
ecosystems to single pulse perturbations, or shocks. This corre-
sponds to the mathematical definition of resilience – either initial or
asymptotic – derived from the theory of linear dynamical systems
(May, 1973a; Neubert and Caswell, 1997). Resilience measures are
rarely used in empirical studies because, amongst other reasons,
environmental perturbations occur all the time. Instead, empirical
stability is typically expressed as the inverse of temporal variability,
directly measured on time series data. This has inspired theoretical
studies to consider variability-based stability measures (Ives et al.,
1999; Lehman and Tilman, 2000; Loreau and de Mazancourt, 2013),
yet these approaches remain largely disconnected from the large
body of resilience-based stability theory. Indeed, several obstacles
stand in the way to establish a clear link between empirically
motivated and purely theoretical views on stability (see Table 2):

(i) Variability is caused by persistent environmental disturbances,
while resilience theory considers single-shock perturbations.

(ii) In previous studies, variability depends on the intensity and
direction of environmental perturbations, whereas resilience
measures do not depend on perturbation features.

iii) In previous studies, variability is measured on a specific vari-
able (like total biomass), whereas resilience measures are
defined independently of a choice of observed variable.

To narrow the gap between variability- and resilience-based
stability, we focused on the fundamental discrepancy (i). We
introduced two new variability measures that originate from the
same theoretical setting as resilience, surmounting discrepancies
(ii) and (iii). They are constructed from the maximal response to
two distinct types of persistent disturbances: shocks occurring
without temporal correlation and stationary perturbations with
long-term correlations. We called them intrinsic measures of
invariability, to emphasize that they only depend on the intrinsic
ecosystem dynamics, i.e., on the community matrix.

Because resilience measures are also intrinsic, stochastic and
deterministic invariability allowed for a general comparison of
stability measures. In doing so, we found that invariability mea-
sures are intermediate between initial and asymptotic resilience.
We explained this result as a consequence of the fact that,
although defined with respect to persistent perturbations,
invariability relates to the whole transient regime following a
shock, while resilience only focuses on specific short-term and
asymptotically long-term responses.

While this result establishes a fundamental link between
variability and resilience, it does not make the connection with
empirical and (empirically motivated) variability. In particular,
empirically measured variability depends on a specific environ-
mental perturbation acting on the system, while intrinsic mea-
sures of invariability and resilience inform on the worst-case
system response over entire sets of perturbations. In Fig. 7 we
illustrate the fact that only asymptotic resilience represents a
generic response to pulse perturbations. In other words, for all
measures but asymptotic resilience, one must expect, in general,
the worst-case response to be very different from the response to
a particular perturbation.
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This indicates that in a context where the nature and direction of
environmental disturbances are expected to change, focusing on a
specific perturbation direction to assess stability can bemisleading in
terms of informing on the potential threats to ecosystems. Intrinsic
measures, although not directly observable on data, thus contain
important stability information that empirical measures might miss.
This statement should however be taken with a note of caution:
invariability and resilience measures do not always relate to realistic
– or observable – perturbation scenarios. Indeed, environmental
disturbances generally do not affect species abundances directly, and
species populations respond differently, depending on their func-
tional traits and abundances. This will associate different intensities
to different directions of perturbations, hence potentially restricting
the response possibilities. For instance, it seems natural to assume
that a perturbation affecting an abundant species is stronger than a
perturbation affecting a less abundant one. We will investigate the
consequences of the scaling of perturbation intensity by abundance
in future work. It is interesting to note already that, while this per-
turbation scaling will not affect resilience (hence the resilience of an
ecosystem can potentially be determined by the response of rare –

even unobserved – species), it can qualitatively modify stability
patterns as predicted by invariability, suggesting that invariability
could be a more flexible stability notion than resilience.

If invariability measures defined in this paper constitute a
stepping stone, the gap between theoretical and empirical stability
remains far from being bridged. In this regard, the underlying
equilibrium assumption constitutes arguably the most serious
obstacle. This assumption is rarely satisfying to approach real
ecological systems, which can sometimes display much more
complex stationary dynamics (see Benincà et al., 2015 for a par-
ticularly convincing example); or can simply not be in a stationary
regime, due to recent environmental change. However, it should
be noted that the framework developed in this paper can, to some
extent, be generalized. For example, intrinsic invariability mea-
sures can be transposed to discrete-time dynamical systems,
which are important in their own right, but also to deal with
periodic ecological dynamics in continuous time. In this case, the
equilibrium assumption is not relevant, but can remain valid after
making a stroboscopic section of trajectories, using the so-called
Poincaré map (Dieckmann and Law, 2000, Chapter 11). This illus-
trates that the results we have obtained for a restricted theoretical
setting can have wider applicability.

Ecosystems across the planet face a myriad of environmental
stress, and threats. In a context of global environmental crisis,
there is a glaring need for conceptual tools to better understand
the complex dynamics of nature. For near-equilibrium dynamics,
we illustrated that focusing on the dominant direction of return to
equilibrium can be misleading, and that a more integrative
approach is possible, providing unintuitive insight on systems
response to potential perturbations. If this idealistic setting can be
used in other cases such as periodic dynamics, it should also serve
as a reference point to move towards more realistic ecosystem
models. The fact that there was unexploited richness in such a
simple setting suggests that ecological stability theory can be
significantly improved without having to resort, yet, to overly
complicated mathematical formalism.
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Appendix A. Mathematical notations

In this paper a vector u is seen as a column whereas its
transpose u> is a row. For complex vectors the dual is taken as
un ¼ u> , the conjugate transpose, so that unv¼ 〈u; v〉 is the Her-
mitian scalar product (Notice that reversing the order gives uvn, a
rank-one matrix). The associated (Euclidean) norm is then

unu¼ u;uh i ¼ uk k2 ðA:1Þ

This norm on vectors induces a norm on matrices B, called the
spectral norm:

Bk k ¼ sup
uk k ¼ 1

Buk k ðA:2Þ

The dominant eigenvalue of a given matrix B (i.e., with largest real
part) is denoted as λdom Bð Þ. If B is a complex matrix, its adjoint is
given by Bn, the conjugate transpose. In particular, it holds that
JBJ2 ¼ λdom BnB

� �
, which justifies the term “spectral norm” for

JBJ .
The space of matrices CS�S is endowed with an inner product

structure A;B
� �¼ Tr AnB

� �
, where Tr stands for the trace, giving the

sum of diagonal elements of square matrices. The Schatten norms
reflect this structure as JBJp ¼ Tr Bj jp� �1=p with Bj j ¼

ffiffiffiffiffiffiffiffi
BnB

p
. In this

paper we only consider p¼1, the trace norm, p¼2, the Frobenius
norm, compatible with the inner product, and p¼1, the spectral

norm. We also endow the space of linear operators L CS�S
	 


–

acting on matrices – with a norm, induced by the Frobenius norm,
as done by Watrous (2005):

8BAL CS�S
	 


; JBJ ¼ sup
JU J F ¼ 1

JBU JF ðA:3Þ

An important remark is that the lifted norm Bk k coincides with the

spectral norm on the space of linear operators L CS�S
	 


.
A matrix A is said to be normal if it commutes with its adjoint

An (Trefethen and Embree, 2005). Hence A and An have the same
eigenvectors, associated to conjugate eigenvalues. This implies
that the dominant eigenvalue of ðAþAnÞ=2 is equal to the real part
of the dominant eigenvalue of A. In particular if RX ; ðX ¼ 0;1Þ;
stands for the two resilience measures defined in the main text,
we get that R0 ¼R1. Hence normal matrices are never relatively
reactive. However, the set of relatively reactive matrices is smaller
than the one of non-normal matrices, as can be proved by
considering

A¼
�1 0 0
0 �2 0
0 ϵ �2

0
B@

1
CA; ðA:4Þ

this matrix is not normal for ϵa0, yet not relatively reactive
either, as long as ϵj jr2. In this example, the eigenvector asso-
ciated to the dominant eigenvalue �1 is orthogonal to the sub-
space associated to the (degenerate) sub-dominant eigenvalue �2.
The non-normality of the restriction of A to that subspace needs to
be sufficiently pronounced to have a significant dynamical impact
on the associated linear system dx=dt ¼ Ax.
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Appendix B. Uncorrelated shocks, white noise, and stochastic
variability

B.1. Stochastic variability is the maximal system response to uncor-
related shocks

We define a class of stochastic perturbations that yields the
same definition of intrinsic stochastic invariability than the one
associated to white noise – Section 3 in the main text. This class
consists of uncorrelated shocks, occurring at random instants.
They take the form of a random sequence of pulse perturbations:

ξλ;ΣðtÞ ¼
X
k

ukδ t�tkð Þ

where vectors ukARS and times tk are independent random vari-
ables, parametrized by correlation matrix Σ and intensity λ. More
precisely, the vectors uk are independent, identically distributed
variables drawn from a distribution of zero mean: Eu¼ 0 and
correlation matrix Σ ¼ Eu>

k uk. They represent the amplitude and
direction of the displacement occurring at time tk. The times tk are
generated by a Poisson process with intensity λ. They represent
the time coordinate of perturbation events. The average number of
events in a time period of length T is λT . We normalize the
intensity λ and the matrix Σ such that λJΣ JF ¼ 1, where J � JF
stands for the Frobenius norm of matrices (Appendix A). This can
be interpreted as a trade-off between frequency of events and
amplitude of the associated displacement. The effect of such dis-
turbances on a community near equilibrium is modeled through
the following linear dynamical system:

dx=dt ¼ Axþξλ;Σ ðtÞ:
The stationary response of the community can then be written
explicitly as

xðtÞ ¼
X

kj tk o t

eðt� tkÞAuk

The mean system response is zero, and the associated covariance
matrix reads

Cn ¼ E uk ;tkf gxðtÞxðtÞ> ¼ E tkf g
X

kj tk o t

eðt� tkÞAΣeðt� tkÞA>

¼
Z t

�1
eðt� sÞAΣeðt� sÞA>

λ ds¼
Z 1

0
esAλΣesA

>
ds

where, in the last term, we recognize the unique solution to the
Lyapunov equation ACnþCnA

> ¼ λΣ (Arnold, 1974), so that

Cn ¼ Â
�1

λΣ
� �

, where Âð�Þ ¼ A � þ � A> is the lifted linear operator
defined in Section 3. Hence, using the Frobenius norm, the max-
imal response over all normalized uncorrelated shocks is

sup
λ JΣ J F ¼ 1

J Â
�1

λΣ
� �

JF ¼ J Â
�1

J ¼ VS

that is, stochastic variability as defined in Section 3. Stochastic
variability can thus be interpreted more generally as the maximal
system response to uncorrelated disturbances, either infinitesimal
shocks occurring at all times (that is, white noise) or finite shocks
occurring at random instants (that is, the above class of uncorre-
lated shocks). In fact, we now prove that white noise is a specific
representative of the class of uncorrelated shocks.

B.2. White noise as a limit case of uncorrelated shocks

In Section 3 we defined white noise as the derivative of the
Brownian motion. We shall use this definition to prove that white
noise is a limit case of uncorrelated shocks. For the sake of sim-
plicity, we limit our attention to the one-dimensional case.
Consider time instants tk generated by a Poisson process with
rate λ. Consider independent random variables uk with identical
distribution. This distribution is not necessarily normal; we only
assume that it has zero mean and finite variance σ2. The associated
uncorrelated shocks read

ξλ;σ2 ðtÞ ¼
X
k

ukδðt�tkÞ

We claim that the joint limit λ-1, σ2-0 with λσ2 ¼ 1 yields the
one-dimensional white-noise signal. We prove this by defining, for
s1os2, the random variable

Wλ;σ2 ðs1; s2Þ ¼
Z s2

s1
ξλ;σ2 ðsÞ ds¼

X
kj s1 o tk o s2

uk

a sum of independent and identically distributed random vari-
ables. The number of terms in the sum is Poisson distributed with
mean λðs2�s1Þ. The mean of Wλ;σ2 ðs1; s2Þ is zero and its variance is
λðs2�s1Þσ2. Moreover, Wλ;σ2 ðs1; s2Þ is independent of Wλ;σ2 ðs3; s4Þ
for s1os2os3os4.

For large λ the number of terms in the sum is typically large,
and we can apply a generalized central limit theorem (Blum et al.,
1963; Rényi, 1963). We find that

lim
λ-1

Wλ;λ� 1 ðs1; s2Þ ¼N ð0; s2�s1Þ

where N stands for the normal distribution. This indicates that
Wλ;λ� 1 ð0; tÞ converges to the Brownian motion and thus that ξλ;λ� 1

ðtÞ converges to white noise.
Appendix C. Deterministic variability and stationary
perturbations

Consider u : Ω� Rt-CS a (wide-sense) stationary signal,
defined on a probability spaceΩ 3 λ. This is the input. We assume
zero mean: EuðtÞ ¼ R

uðλ; tÞ dλ¼ 0 and finite power at any given
time:

EJuðtÞJ2 ¼
Z

Juðλ; tÞuðλ; tÞn J1 dλ

Here J � Jp stands for the Schatten norm of matrices (p¼1 is trace
norm, p¼2 is Frobenius norm and p¼1 is spectral norm). Writing

γin t; τð Þ ¼ EuðtÞuðt�τÞn

for the signal autocorrelation matrix, we see that the power of the
input is given by Jγinðt;0ÞJ1. Wide-sense stationarity means that
the autocorrelation is independent of tAR; we therefore drop that
variable from now on. Consider now, for any realization λAΩ, the
dynamical system

dx¼ Ax dtþuðλ; tÞ dt
where A is a stable matrix. The system's stationary state reads, for
any λAΩ

xðt;λÞ ¼
Z t

�1
eðt� sÞAuðλ; sÞ ds¼

Z 1

t
eðs� tÞAuðλ; �sÞ ds

This defines (one realization) of the output signal. We wish to
estimate the power of the output. By definition it is given by the
trace norm of the autocorrelation matrix γoutð0Þ ¼ Exð0Þxð0Þn Pre-
cisely, we prove the following (sharp) upper bound on that power:

γout 0ð Þ
�� ��

1rV2
D Jγin 0ð ÞJ1

showing that VD, deterministic variability, is the maximal power
gain that the system can generate. To see this, notice first that

γout 0ð Þ ¼
Z 1

0

Z 1

0
es1AEuð�s1Þuð�s2Þnes2A

n

ds1 ds2



J.-F. Arnoldi et al. / Journal of Theoretical Biology 389 (2016) 47–5958
¼
Z 1

0

Z 1

0
es1Aγin s1�s2ð Þes2An

ds1 ds2

From the Wiener–Khinchin–Einstein theorem (Wiener, 1930), γin
τð Þ can be decomposed with respect to its power spectral density
dγ̂ in ωð Þ as

γin τð Þ ¼
Z
R

e� iωτ dγ̂ in ωð Þ

where, defining the truncated Fourier transform ûT ðλ;ωÞ ¼
2πð Þ�1 R T

0 uðλ; tÞeiωt dω, the power spectral density can be con-
structed as

dγ̂ in ωð Þ ¼ lim
T-1

1
T
EûT ðωÞûT ðωÞn dω

It then holds that, for any measurable set U �R, the matrix C ¼R
Udγ̂ in ωð Þ is positive semi-definite. In particular, the decomposi-
tion yields γin 0ð Þ ¼ R

R
dγ̂ in ωð Þ which is positive semi-definite by

construction. Now, by linearity of the trace

Jγin 0ð ÞJ1 ¼
Z
R

Jdγ̂ in ωð ÞJ1

showing that the signal's power is additively distributed amongst
its frequency components. We use the power spectral decom-
position of γinðτÞ to compute γoutð0Þ. It gives

γout 0ð Þ ¼
Z
R

Z 1

0

Z 1

0
es1ðA� iωÞ dγ̂ in ωð Þes2ðA� iωÞn ds1 ds2

¼
Z
R

iω�Að Þ�1 dγ̂ in ωð Þ iω�Að Þ�1n

Using Hölder's inequality, we get

Jγout 0ð ÞJ1r
Z
R

J iω�Að Þ�1 J21 Jdγ̂ in ωð ÞJ1

rsup
ω

J iω�Að Þ�1 J21 Jγin 0ð ÞJ1 ¼ V2
D Jγin 0ð ÞJ1

with VD ¼ supω J iω�Að Þ�1 J1 denoting deterministic variability.
The inequality is strict for u λ; t

� �¼ eiðωt�λÞv with λA S1; dλ
	 


where dλ is the uniform measure on the circle, with ω and va0
satisfying iω�Að Þ�1v

��� ���¼ VD JvJ . Indeed, notice that dγ̂ inðωÞ ¼
vvnð ÞδðωÞdω so that γin 0ð Þ

�� ��
1 ¼ JvJ2. Also γout 0ð Þ ¼ iω�Að Þ�1v

iω�Að Þ�1v
	 
n

so that γout 0ð Þ
�� ��

1 ¼ iω�Að Þ�1v
��� ���2

1
¼ V2

D γin 0ð Þ
�� ��

1.
Appendix D. Harte's integrative measure of ecological stability

When defining stochastic variability in Section 3, to normalize
the noise covariance matrix Σ and to measure its effect on the
system response Cn, we used the Frobenius norm J � JF. Other
choices can be made, leading to slightly different results and
interpretations. In this appendix we consider the trace norm

Σ
�� ��

Tr ¼ Tr
ffiffiffiffiffiffiffiffiffiffiffiffi
Σ >Σ

p	 

which compares to the Frobenius norm as Σ

�� ��
Fr Σ

�� ��
Trr

ffiffiffi
S

p
Σ
�� ��

F
(recall that S is the dimension of the system, e.g., number of spe-
cies). This choice leads to an interpretable notion of variability and
facilitates the comparison between invariability and resilience.
Indeed, the trace norm of the system response Cn is simply the
expected square distance to equilibrium of the stationary dis-
tribution of Xn,

JCn JTr ¼ Tr Cnð Þ ¼
XS
i ¼ 1

EðX2
i Þ ¼ Eð Xnk k2Þ:
For the trace norm, by convexity, the maximizing matrix Σ is an
orthogonal projector uu> on a specific direction spanned by the
vector u, with uk k ¼ 1. One can then express the associated sta-
tionary covariance matrix as Cn ¼

R1
0 etAuðetAuÞ> dt. This leads to a

different expression of intrinsic variability, namely (using linearity
of the trace),

V 0
S ¼ sup

uk k ¼ 1

Z 1

0
etAu
�� ��2 dt ðD:1Þ

This definition of variability relates to the one derived using the
Frobenius norm. In fact, it is rather straightfoward to show that the
norm comparison is transported to the variability notions, giving

VSrV 0
Sr

ffiffiffi
S

p
VS: ðD:2Þ

At this point we can make an important remark on the link
between intrinsic variability and resilience. Initial and asymptotic
resilience are short- and long-term characteristic of the transient
regime following a pulse perturbation. We see from (D.1) that
stochastic variability is related to the whole transient.

In fact, Harte and Halfon (1979) had proposed a stability
measure S, designed to integrate both short- and long-term
responses of ecological communities. With our notations, for
pulse perturbations, Harte's measure reads

S�1 ¼
XS
i ¼ 1

Z 1

0
jxiðtÞj 2 dt ¼

Z 1

0
etAx0
�� ��2 dt

Harte argued that this measure was empirically convenient, yet
“does not connect in any transparent way with methods of
mathematical analysis”. To some extent, we have revealed this
connection. The maximal value for S�1 over normalized pulse
perturbations is exactly V 0

S, that is intrinsic stochastic variability,
when defined with respect to the trace norm.
Appendix E. Proof of the general stability ordering

Let us here briefly sketch the proof of the chain of inequalities (12)

R0rISrIDrR1

Where RX ; IYðX ¼ 0;1;Y¼ S;DÞ are the four intrinsic stability
measures defined in the main text. We start from the classical
inequality from pseudo-spectra analysis, giving a lower bound on the
frequency response of the system dx=dt ¼ Ax in terms of the excita-
tion frequency ω and the dominant eigenvalue of the community
matrix A:

iω�Að Þ�1
��� ���Z iω�λdom

�� ���1 ðE:1Þ

a proof of which can be found in the book by Trefethen and Embree
(2005). Another useful relation shows that resilience bounds the
amplification envelope, in the sense that

e�R1tr etA
�� ��re�R0t ðE:2Þ

From the definition of deterministic variability (11), the first expres-
sion (E.1) implies that VDZ R λdom

� ��� ���1 ¼R�1
1 , hence that IDrR1.

At this point, it is useful to give an alternative expression for the
system's response direction w appearing in (9), namely:

w¼
Z 1

0
etðA� iωÞu dt

Recall that the norm of this vector quantifies variability under deter-
ministic forcing. By definition, we then have

VDr max
Ju J ¼ 1

Z 1

0
etAu
�� �� dt ðE:3Þ

This shows that variability is bounded by the area under the ampli-
fication envelope etA

�� ��, so that (E.2) gives R0rID.
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We have showed that R0rIDrR1. We now prove that
R0rIS. We use the trace-normalization described in (Appendix
D), to define intrinsic variability (D.1) and put I 0

S ¼ 1
2 V 0

S�1. From
(D.2) we have that that I 0

SrIS. The expression (D.1), along with
(E.2) above, gives the expected inequality.

It thus remains to be proved that ISrID. We shall need a
lemma from linear algebra

Lemma. For any invertible matrix B acting on RN, it holds that:

min
xARN ; xk k ¼ 1

Bxk k ¼ max
yARN ; yk k ¼ 1

B�1y
��� ���

 !�1

Proof. Take xn ¼ B�1y=JB�1yJ with y normalized and realizing
the max of B�1y

��� ���. By construction minxARN ; xk k ¼ 1 Bxk kr Bxnk k ¼
ðmaxyARN ; yk k ¼ 1 B�1y

��� ���Þ�1: To show that taking the min over all
normalized elements x does not give anything smaller, it suffices
to choose yn ¼ Bx=JBxJ with x normalized and realizing the min of
JBxJ . By construction maxyARN ; yk k ¼ 1 B�1y

��� ���Z B�1yn

��� ���
¼ ðminxARN ; xk k ¼ 1 Bxk kÞ�1, which is equivalent to minxARN ; xk k ¼ 1
Bxk kZ ðmaxyARN ; yk k ¼ 1 B�1y

��� ���Þ�1; proving the lemma.□

Now, with the above lemma, we get that

2IS ¼ sup
Σk kF ¼ 1

Â
�1
Σ

��� ���
 !�1

¼ inf
Ck kF ¼ 1

ÂC
��� ���

and similarly

ID ¼ inf
ω; vk k ¼ 1

iω�Að Þv
�� ��

Therefore, for any normalized matrix C,

2ISr inf
Ck kF ¼ 1

ÂC
��� ���

If we choose C as a rank-one orthonormal projector C ¼ vvn. We
then have that

2ISr ÂC
��� ���

F
¼ Avð Þvnþv Avð Þn
�� ��

F ¼ iω�Að Þvð Þvnþv iω�Að Þvð Þn
�� ��

F

for any real ω. Choosing v and ω such that ID ¼ iω�Að Þv
�� �� yields

2ISr ÂC
��� ���

F
r2ID:

giving the full ordering (12).
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