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Abstract

Empirical knowledge of diversity–stability relationships is mostly based on the analysis of tempo-
ral variability. Variability, however, often depends on external factors that act as disturbances,
which makes comparisons across systems difficult to interpret. Here, we show how variability can
reveal inherent stability properties of ecological communities. This requires that we abandon one-
dimensional representations, in which a single variability measurement is taken as a proxy for
how stable a system is, and instead consider the whole set of variability values generated by all
possible stochastic perturbations. Despite this complexity, in species-rich systems, a generic pat-
tern emerges from community assembly, relating variability to the abundance of perturbed species.
Strikingly, the contrasting contributions of different species abundance classes to variability, dri-
ven by different types of perturbations, can lead to opposite diversity–stability patterns. We con-
clude that a multidimensional perspective on variability helps reveal the dynamical richness of
ecological systems and the underlying meaning of their stability patterns.
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INTRODUCTION

Ecological stability is a notoriously elusive and multifaceted
concept (Pimm 1984; Donohue et al. 2016). At the same time,
understanding its drivers and relationship with biodiversity is
a fundamental, pressing, yet enduring challenge for ecology
(Elton 1946; MacArthur 1955; May 1973a; McCann 2000).
The temporal variability of populations or ecosystem func-
tions, where lower variability is interpreted as higher stability,
is an attractive facet of ecological stability, for several rea-
sons. First, variability is empirically accessible using simple
time-series statistics (Tilman et al. 1996). Second, variability –
or its inverse, invariability – is a flexible notion that can be
applied across levels of biological organisation (Haegeman
et al. 2016) and spatial scales (Wang & Loreau 2014; Wang
et al. 2017). Third, variability can be indicative of the risk
that an ecological system might go extinct, collapse or experi-
ence a regime shift (Scheffer et al. 2009). During the last dec-
ade, the relationship between biodiversity and ecological
stability has thus been extensively studied empirically using
invariability as a measure of stability (Tilman et al. 2006;
Jiang & Pu 2009; Hector et al. 2010; Campbell et al. 2011;
Gross et al. 2014; Pennekamp et al. 2018).
In a literal sense, stability is the property of what tends to

remain unchanged (Pimm 1991). Variability denotes the ten-
dency of a variable to change in time, so that its inverse fits
this intuitive definition. However, variability is not necessarily
an inherent property of the system that is observed (e.g. a
community of interacting species), as it typically also depends
on external factors that act as perturbations. Thus, the vari-
ability of a community is not a property of that community
alone. It may be caused by a particular perturbation regime so

that a different regime could lead to a different value of vari-
ability. All else being equal, stronger perturbations will gener-
ate larger fluctuations, and the way a perturbation’s intensity
is distributed and correlated across species is also critical. In
other words, a variability measurement reflects the response
of a system to the specific environmental context in which it is
embedded.
Despite this complexity, quantifying the fluctuations of an

ecosystem property (e.g. primary production) can be of fore-
most practical interest as it provides a measure of predictabil-
ity in a given environmental context (Griffin et al. 2009).
However, to generalise results beyond the specific context in
which variability is measured, use variability to compare the
stability of different systems, establish links between different
stability notions, or reconcile the conflicting diversity–stability
patterns and predictions reported in the empirical and theoret-
ical literature (Ives & Carpenter 2007), one needs to know
how variability measurements can reflect a system’s inherent
dynamical features.
Here, we adopt an approach in which stability is viewed as

the inherent ability of a dynamical system to endure perturba-
tions (Fig. 1a). For simplicity, we will restrict to systems near
equilibrium, by opposition to, for example limit cycles or
chaotic attractors. We propose that a measure of stability
should reflect, not a particular perturbation (as in Fig. 1b),
but a system’s propensity to withstand a whole class of pertur-
bations. We therefore consider a vast perturbation set, and
study the corresponding range of community responses
(Fig. 1c). Even from a theoretical perspective, considering all
possible perturbations that an ecosystem can face is a daunt-
ing task. We will thus restrict our attention to weak stochastic
perturbations, and derive analytical formulas for two
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complementary features of a community’s variability values:
the average and maximum, corresponding to the mean- and
worst-case perturbation scenarios respectively.
After having developed a general theory of variability that

can be applied to any system near equilibrium, we turn our
attention to species-rich communities assembled from random
Lotka–Volterra models. We show that a simple variability–
abundance pattern emerges from community assembly. We
argue that this pattern is a generic expectation for diverse
communities when interspecific interactions are strong
enough, and will hold beyond random models (Barbier et al.
2018). This pattern, in conjunction with the type of perturba-
tions considered (e.g. environmental or demographic stochas-
ticity), determines the specific species abundance class that
governs the variability distribution. In particular, we establish
a fundamental link between species abundance, worst-case
variability and asymptotic resilience – the long-term rate of
return to equilibrium following a pulse perturbation. We
finally illustrate that the contrasting contributions of various
species abundance classes can be responsible for opposite
diversity–invariability patterns.

CONCEPTUAL FRAMEWORK

Perturbed communities

Let Ni(t) represent the abundance (or biomass) of species i at
time t, and xi(t) = Ni(t) � Ni its displacement from an equilib-
rium value Ni, with i running over S coexisting species that
form an ecological community. We model variability as a

response to stochastic forcing. We focus on stationary fluctua-
tions caused by weak perturbations with zero mean, governed
by the following dynamical system, written from the perspec-
tive of species i as

d

dt
xiðtÞ|ffl{zffl}

fluctuations

¼
XS
j¼1

AijxjðtÞ|fflfflfflffl{zfflfflfflffl}
interactions

þ ri
ffiffiffiffiffi
Ni

p a
niðtÞ|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

perturbation

: ð1Þ

The coefficients Aij represent the effect that a small change in
abundance of species j has on the abundance of species i.
Organised in the community matrix A = (Aij), they encode the
linearisation of the nonlinear system of which (Ni) is an equi-
librium. In the perturbation term, ξi(t) denotes a standard
white-noise source (Arnold 1974; Van Kampen 1997). In dis-
crete time, ξi(t) would be a normally distributed random vari-
able with zero mean and unit variance, drawn independently
at each time step (see Appendix S1 in Supporting Informa-
tion).
Such models were studied by Ives et al. (2003) to analyse

ecological time series. In their approach, stability properties
are inferred from the system’s response to specific perturba-
tions. Here, we build on a similar formalism, but explicitly
explore a vast set of possible perturbations. Although envi-
ronmental fluctuations often follow temporal patterns (Vas-
seur & Yodzis 2004; Ruokolainen et al. 2009; Fowler &
Ruokolainen 2013), we will not consider autocorrelated per-
turbations. What we will explicitly consider, however, are
temporal correlations between ξi(t) and ξj(t), a situation in
which individuals of species i and j are similar in their percep-
tion of a given perturbation, a property known to have
potentially strong, and unintuitive effects on species dynamics
(Ripa & Ives 2003).
For the fluctuations of species abundance in eqn 1 to be sta-

tionary, the equilibrium state (Ni) must be stable. More tech-
nically, the eigenvalues of the community matrix A must have
negative real part (May 1973a; Gurney & Nisbet 1998). The
maximal real part determines the slowest long-term rate of
return to equilibrium following a pulse perturbation. This rate
is a commonly used stability measure in theoretical studies;
we call it asymptotic resilience and denote it by R1 (Arnoldi
et al. 2016). To showcase links between stability concepts, we
will compare asymptotic resilience to measures of community-
wide variability.

Perturbation type

The perturbation term in eqn 1 represents the direct effect
that a perturbation has on the abundance of species i. It
consists of two terms: some power a of

ffiffiffiffiffi
Ni

p
and a species-

specific term riξi(t). The latter is a function of the perturba-
tion itself, and of traits of species i that determine how
individuals of that species perceive the perturbation. The for-
mer defines a statistical relationship between a perturbation’s
direct effects and the mean abundance of perturbed species.
It allows us to consider ecologically distinct sources of
variability (Fig. 2).
When individuals of a given species respond in synchrony

to a perturbation, the direct effect of the perturbation will be
proportional to the abundance of the perturbed species, thus

Figure 1 Variability vs. stability. (a) Stability quantifies the way a system

responds to perturbations, seen as an inherent property of the system

(indicated by the red framed box). (b) By contrast, temporal variability is

typically a feature of both the system studied and external factors that act

as perturbations. (c) For variability to be an inherent property of the

system, one can consider a whole set of perturbations, thus integrating

out the dependence on specific external factors.
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a value of a close to 2 (Lande et al. 2003). We call this type
of perturbation environmental as fluctuations of environmental
variables typically affect all individuals of a given species
(Turelli 1981) leading, for example to changes in the popula-
tion growth rate (May 1973b).
If individuals respond incoherently, for example some nega-

tively and some positively, the direct effect of the perturbation
will scale sublinearly with species abundance. For instance,
demographic stochasticity can be seen as a perturbation
resulting from the inherent stochasticity of birth and death
events, which are typically assumed independent between indi-
viduals. In this case a = 1, and we thus call such type demo-
graphic (Lande et al. 2003).
Finally, setting a = 0 represents purely exogenous distur-

bances such as the random removal or addition of individuals.
We call such perturbations immigration type. We stress, how-
ever, that actual immigration events could depend on popula-
tion size, and that because we focus on zero-mean
perturbations, perturbations of this type contain as much emi-
gration than immigration. The reasoning behind this nomen-
clature is that, in an open system, fluctuations of an otherwise
constant influx of individuals would correspond to an immi-
gration-type perturbation.
More generally, varying a describes a continuum of pertur-

bation types. Although not unrelated, the statistical

relationship that defines perturbation type is not equivalent to
Taylor’s law (Taylor 1961). The latter is an empirically
observed power law relationship between the variance and
mean of population fluctuations. In contrast to the perturba-
tion type a, the exponent of Taylor’s law depends on commu-
nity dynamics, for example on species interactions (Kilpatrick
& Ives 2003). We will come back to this point below and in
the Discussion.

Perturbation intensity

For a given community, and all else being equal, a more
intense perturbation will lead to a more intense response. A
disproportionate increase of the response with perturbation
intensity would signal nonlinear dynamics (Zelnik et al. 2019).
Near equilibrium, however, response intensity depends linearly
on perturbation intensity (Ives et al. 2003). We now illustrate
how to remove this trivial dependency, leading to our defini-
tion of community-wide variability.
Fluctuations induced by white-noise forcing are normally

distributed, thus fully characterised by their variance and
covariance. We thus construct a measure of community-wide
variability based on the variance of species time series. To
compare the variability of systems with different species rich-
ness, we use a community’s average variance:

Figure 2 A theoretical framework for variability. Perturbations are characterised by their type, a statistical relationship between the direct effect of

perturbations and the abundance of perturbed species. For a given type and fixed intensity, there remains a whole set of covariance structures of

perturbations, that is various perturbation directions, that will be transformed by community dynamics into a whole set of community responses that is

various covariance structures of species stationary time series. A sampling of those responses leads to a variability distribution, one for each perturbation

type. Spanning all perturbation types leads to a family of variability distributions (in blue, green and red in the rightmost column).

© 2019 John Wiley & Sons Ltd/CNRS

Letter The multidimensionality of variability 1559



r2out ¼
1

S

X
i

VarðNiðtÞÞ: ð2Þ

Furthermore, in Appendix S2, we explain how this measure
is related to the variance of ecosystem functions. In eqn 1, the
perturbation intensity on species i is encoded in the term ri.
We define perturbation intensity at the community level as the
average intensity per species that is using the species-specific
intensities r2i :

r2in ¼ 1

S

X
i

r2i : ð3Þ

When increasing all species-specific perturbation intensities by
a factor c, both r2in and r2out increase by the same factor (see
Appendix S2). To remove this linear dependence, we define
variability V as

V ¼ r2out
r2in

; ð4Þ

that is, the average species variance relative to perturbation
intensity (see Ives et al. 2003 for a similar definition). Follow-
ing previous work (Arnoldi et al. 2016; Arnoldi & Haegeman
2016; see Appendix S4), we construct invariability I as

I ¼ 1

2V : ð5Þ

The factor 1/2 allows I to coincide, for simple systems, with
asymptotic resilience R1 (Arnoldi et al. 2016, and
Appendix S2).

Perturbation direction

At fixed intensity, perturbations can still differ in how their
intensity is distributed and temporally correlated across spe-
cies. Species with similar physiological traits will be affected
in similar ways by, say, temperature fluctuations, whereas
individuals from dissimilar species may react in unrelated, or
even opposite, ways (Ripa & Ives 2003). We thus study the
effect of the covariance structure of the perturbation terms
that is the effect of the direction of perturbations.
Spanning the set of all perturbation directions defines a

whole range of community responses. Assuming some proba-
bility distribution leads to a probability distribution over the
set of responses that is a variability distribution (see Fig. 2).
Spanning the set of perturbation types reveals a continuous
family of variability distributions. In Fig. 2, we show three
archetypal elements of this family, corresponding to a = 0
(blue distribution), a = 1 (green) and a = 2 (red).
For each distribution, we consider two complementary

statistics: mean- and worst-case responses. In Appendices S3
and S4, we prove that the worst-case response is always
achieved by perturbations with maximal interspecific correla-
tions. We derive explicit formulas to compute the worst-case
variability from the community matrix and species equilibrium
abundances, given by eqns S18 and S24.
The mean-case scenario is defined as the average response

over all perturbation directions. We prove in Appendices S3
and S4 that it is realised by a perturbation affecting all spe-
cies independently and with equal intensity. This provides a

simple way to compute this mean response from the commu-
nity matrix and species abundances, given by eqns S19 and
S25.

RESULTS

Variability patterns for two-species community

We illustrate our variability framework on the following ele-
mentary example, in the form of a 2 9 2 community matrix

A ¼ �1 0:1
�4 �1

� �
: ð6Þ

This matrix defines a linear dynamical system that could
represent a predator–prey community with the first species
benefiting from the second at the latter’s expense. Its asymp-
totic resilience is R1 ¼ 1. Let us suppose that the prey, N2

(second row/column of A) is 7.5 times more abundant than
its predator, N1 (first row/column of A) and consider
stochastic perturbations of this community, as formalised in
eqn 1.
In Fig. 3, we represent the set of perturbation directions as

a disc, in which every point is a unique perturbation direction
(see Appendix S5 for details). The effect of a perturbation on
a community is represented as a colour; darker tones imply
larger responses, with the baseline colour (blue, green or red)
recalling the perturbation type (a = 0, 1, 2 respectively).
Points at the boundary of the disc correspond to perturba-
tions with maximal interspecific correlations, which have the
potential to generate the largest (and the smallest) variability.
This is why the colour maps of Fig. 3 take their extreme val-
ues at the boundary. We see that variability strongly depends
on the perturbation direction, and that this dependence is
strongly affected by the perturbation type. For immigration-
type perturbations (in blue), variability is largest when per-
turbing the predator species most strongly (the least abundant
species in this example). For demographic-type perturbations
(in green), perturbations that equally affect the two species
but in opposite ways achieve the largest variability. For envi-
ronmental-type perturbations (in red), variability is largest
when perturbing the prey species (the most abundant species
in this example). For all types, we see that positive correla-
tions between the components of the perturbation (i.e. moving
upwards on the disc) reduce variability (see Ripa & Ives 2003
for related results).
Thus, in general, a given community cannot be associated

to a single value of variability. Depending on the type of per-
turbations causing variability, different species can have com-
pletely different contributions. This stands in sharp contrast
with asymptotic resilience R1, which associates a single sta-
bility value to the community. We know from previous work
(Arnoldi et al. 2016) that the smallest invariability value in
response to immigration-type perturbations will always be
smaller than R1 (and larger than the slowest initial return
rate, which determines a system’s reactivity (Neubert & Cas-
well 1997)). For any perturbation type and/or any perturba-
tion direction there is, however, no reason to expect a
relationship between invariability, asymptotic resilience, and
reactivity.
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Variability patterns in complex communities

The dimensionality of variability will be larger in communities
comprised of many species, as their sheer number, S, increases
the dimension of the perturbation set quadratically. Yet, when
species interact, a generic structure can emerge from ecologi-
cal assembly, revealing a simple relationship between variabil-
ity and the abundance of perturbed species. To show this, we
study communities assembled from Lotka–Volterra dynamics.
We start from a large pool of species with randomly drawn
dynamical parameters, and let the system settle to an equilib-
rium. During assembly species would go extinct, but by con-
sidering relatively small interspecific interaction strengths, we
ensured that the dynamics were never cyclic nor chaotic. A
complete description of the model is given in Appendix S6
and Matlab simulation code is available as supplementary
material. We then applied our general variability framework
to those communities. This enabled us to assess the

community-wide impact of weak stochastic perturbations that
do not cause extinctions.
In Fig. 4, we show the corresponding variability patterns

for a single community, but the results hold more generally
(see below). The species pool consists of Spool = 50 species,
with species interaction strengths one order of magnitude
weaker than species self-regulation. After the assembly pro-
cess, S = 40 species coexist in the community. In this species-
rich context, the perturbation set cannot be represented
exhaustively. We therefore plot the variability induced by
weak species-specific perturbations (of various types) against
the abundance of perturbed species. That is, we focus on the
effect of a specific subset of perturbations, those affecting a
single species. All perturbations without interspecific temporal
correlations can be constructed by linear combination of spe-
cies-specific perturbations. Linear combinations of species-
specific perturbations will thus span all scenarios in which spe-
cies are affected independently, but exclude scenarios in which

Figure 3 Variability patterns for a two-species community. Top panel: For a two-species community, the set of all perturbation directions can be

represented graphically as a disc (shaded in grey), with the variance of the perturbation term ξ2(t) on the x-axis and the covariance between ξ1(t) and ξ2(t)
on the y-axis. Some special perturbation directions are indicated (numbers 1–5, see also Appendix S5). Bottom panels: We consider a predator–prey
system; the community matrix A is given by eqn 6 and the prey (species 2) is 7.5 more abundant than its predator (species 1). The induced variability

depends on the perturbation directions (darker colours indicate larger variability), and this dependence in turn depends on the perturbation type a. For
immigration-type perturbations (a = 0, in blue), variability is largest when perturbing species 1 most strongly. For demographic-type perturbations

(a = 1, in green) perturbations that affect the two species equally strongly but in opposite ways achieve the largest variability. For environmental-type

perturbations (a = 2, in red), variability is largest when perturbing species 2 most strongly. Notice that the worst case is always achieved by perturbations

lying on the edge of the perturbation set. Such perturbations are perfectly correlated (see main text and Appendix S5).
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they are perturbed in systematically correlated or anticorre-
lated way (in terms of the geometrical representation of
Fig. 3, this amounts to restricting to the equator of the
coloured discs).
The leftmost panel shows a negative unit slope on log

scales: when caused by immigration-type perturbations, vari-
ability is inversely proportional to the abundance of perturbed
species. The worst-case scenario thus corresponds to a pertur-
bation of the rarest species. Worst-case invariability is close to
asymptotic resilience, which corroborates previous findings
showing that the long-term rate of return to equilibrium is
often associated with rare species (Haegeman et al. 2016;
Arnoldi et al. 2018). In contrast, the middle panel of Fig. 4
shows that, for demographic-type perturbations, the induced
community-wide variability does not depend on the abun-
dance of the perturbed species. Finally, the rightmost panel
shows a positive unit slope on log scales: when caused by
environmental stochasticity, variability is proportional to the
abundance of perturbed species. The worst case is thus
attained by perturbing the most abundant one. Despite being
intrinsically more stable than rare ones – in the sense that
they buffer exogenous (immigration-type) perturbations more
efficiently – common species are more strongly affected by
environmental perturbations, and can thus generate the most
variability.
Those patterns are not coincidental, but emerge from spe-

cies interactions, as we illustrate in Fig. 5. In their absence,
other patterns can be envisioned. Without interactions, the
response to a species-specific perturbation involves the per-
turbed species only. The variability–abundance relationship is
then V ¼ Na=2r, with N = K. If r and K are statistically inde-
pendent in the community (top-left panel in Fig. 5); this yields
a different scaling than the one seen in Fig. 4. In the case of
an r–K trade-off (i.e. species with larger carrying capacities

have slower growth rate), abundant species would be the least
stable species (bottom-left panel in Fig. 5, in blue) which is
the opposite of what the leftmost panel of Fig. 4 shows. How-
ever, as interaction strength increases (from left to right in
Fig. 5; the ratios of inter- to intraspecific interaction strength
are 0, 0.02 and 0.1 approximately), we see emerging the rela-
tionship between abundance and variability of Fig. 4, regard-
less of the choice made for species growth rates and carrying
capacities. The plotted results are generated assuming random
interaction strengths, but we explain in Appendix S7 that
those results reflects a generic limit-case behaviour that need
not be specific to random interactions. The described variabil-
ity–abundance patterns occur when species abundances are
only faintly determined by their carrying capacities, but
mostly by their many direct and indirect interactions with the
rest of the community (see Appendix S7 for the precise state-
ment).
Although we considered a specific section of the perturba-

tion set, the response to single-species perturbations can still
span the whole variability distribution. In particular, for
immigration-type and environmental perturbations, single-spe-
cies perturbations realise the worst-case (perturbation of the
rarest and most abundant species, respectively), the mean-case
and the best-case scenarios (perturbation of the most abun-
dant and rarest species respectively). For demographic-type
perturbations, the situation is more subtle. Variability can be
independent of species abundance, and, in general, extreme
scenarios will be associated to temporally correlated perturba-
tions affecting multiple species.
The variability–abundance patterns shown in Figs 4 and 5

should not be confused with Taylor’s law (Taylor 1961), a
power law relationship between a species’ variance and its
mean abundance. In fact, the variability–abundance pattern is
dual to Taylor’s law: it represents the community response to

Figure 4 Variability–abundance pattern in a complex community. We consider a community of S = 40 species, and look at the variability induced by

perturbing a single species, whose abundance is reported on the x-axis. Left: When caused by immigration-type perturbations (a = 0), variability is

inversely proportional to the abundance of the perturbed species (notice the log scales on both axis). The worst case is achieved by perturbing the rarest

species, and is determined by asymptotic resilience (more precisely, it is close to 1=2R1). Middle: For demographic-type perturbations (a = 1), variability

is independent of the abundance of the perturbed species. The worst case is not necessarily achieved by focusing the perturbation on one particular species.

Right: For environmental-type perturbations (a = 2), variability is directly proportional to the abundance of the perturbed species. The worst case is

attained by perturbing the most abundant. The value b reported in each panel corresponds to the exponent of the fitted relationship Vi / Nb
i for each

perturbation type a.
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single-species perturbations instead of that of individual spe-
cies to a community-wide perturbation.

Diversity–invariability relationships

To illustrate implications of the generic variability–abundance
pattern, we revisit the diversity–stability relationship, with sta-
bility quantified as invariability I . We assembled communities
of increasing species richness S, each associated with an
invariability distribution generated from random perturba-
tions, predictions for the mean- and worst-case scenarios, and
a value of asymptotic resilience R1.
The leftmost panel of Fig. 6 shows a negative relationship

between invariability in the face of immigration-type perturba-
tions, and species richness. Asymptotic resilience and worst-
case invariability mostly coincide, with a decreasing rate
roughly twice as large as that of the mean case. The middle
panel suggests a different story. Mean-case demographic-type
invariability stays more or less constant, whereas the worst
case diminishes with species richness, although much more

slowly than R1. The relationship between diversity and sta-
bility is thus ambiguous. In the rightmost panel we see an
increase in all realised environmental-type invariability values
with species richness, showcasing a positive diversity–stability
relationship.
The diversity stability relationships can be explained by the

generic variability–abundance patterns of Figs 4 and 5 (see
Appendix S8). In the case of immigration-type perturbations,
species contributions to variability are proportional to the
inverse of their abundance (first panel of Fig. 4). The worst-
case scenario follows the abundance of the rarest species,
which rapidly declines with species richness. As detailed in
Appendix S8, mean-case invariability scales as the average
species abundance, which also typically decreases with S.
The responses to demographic perturbations, in contrast,

are not determined by any specific species abundance class
(second panel of Fig. 4), so that no simple expectations based
on typical trends of abundance distributions can be deduced.
We recover a simpler behaviour when looking at the

response to environmental-type perturbation: abundant

Figure 5 The emergence of the variability–abundance pattern (same procedure as in Fig. 4). Top row: intrinsic growth rates r and carrying capacities K are

sampled independently. Bottom row: Species satisfy a r–K trade-off (r � 1/K). Colours correspond to the three perturbation types: a = 0 (blue), a = 1

(green) and a = 2 (red). The value b reported in each panel corresponds to the exponent of the fitted relationship Vi / Nb
i for each perturbation type. As

interaction strength increases (left to right), we see emerging the relationship between abundance and variability described in Fig. 4 that is b = a � 1.

Thus, when species interactions are sufficiently strong, variability always ends up being: inversely proportional (a = 0, blue), independent (a = 1, green)

and directly proportional (a = 2, red) to the abundance of the perturbed species. Recall that the exponent a characterises the perturbation, while the

exponent b describes the system response to the perturbation.
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species now drive variability (rightmost panel of Fig. 4). As
explained in Appendix S8, mean-case invariability now scales
as the inverse of the average species abundance. The latter
typically declines with S explaining the observed increase of
mean-case invariability.
There is an analogy to be made between stability and diver-

sity. As has been said about diversity metrics (e.g. species
richness, Shannon entropy or Simpson index), different invari-
ability measures ‘differ in their propensity to include or to
exclude the relatively rarer species’ (Hill 1973). In this sense,
different invariability measures can probe different dynamical
aspects of a same community, with potentially opposite
dependencies on a given ecological parameter of interest.

DISCUSSION

Because it is empirically accessible using simple time-series
statistics, temporal variability is an attractive facet of ecologi-
cal stability. But there are many ways to define variability in
models and empirical data, a proliferation of definitions remi-
niscent of the proliferation of definitions of stability itself
(Grimm & Wissel 1997). Variability measurements often
depend, not only on the system of interest, but also on exter-
nal factors that act as disturbances, which makes it difficult to
relate variability to other stability concepts. These caveats
constitute important obstacles towards a synthetic under-
standing of ecological stability, and its potential drivers (Ives
& Carpenter 2007).
We proposed to consider variability as a way to probe

and measure an ecosystem’s response to perturbations, thus
revealing inherent dynamical properties of the perturbed
system. We did not seek for an optimal, single measure of
variability but, on the contrary, we accounted for a vast set
of perturbations, leading to a whole distribution of
responses. We focused on the worst- and mean-case values

of this distribution as functions of species abundance, their
interactions and the type of perturbations that generates
variability.
A perturbation-type characterises a statistical relationship

between its direct effect on a population and the latter’s abun-
dance. We distinguished between environmental perturbations,
whose direct effects scale proportionally with population
abundance; whose direct effects scale sublinearly with popula-
tion abundance; and immigration-type perturbations, repre-
senting purely exogenous events such as the random addition
and removal of individuals. Controlling for perturbation type
and intensity, we considered all the ways this intensity can be
distributed and correlated across species.
After having described a general (linear) theory for variabil-

ity, which emphasises its highly multidimensional nature, we
turned our attention towards species-rich communities assem-
bled by random (nonlinear) Lotka–Volterra dynamics, seen as
a generic limit of complex communities (Barbier & Arnoldi
2017). Because of the sheer number of species contained in
such communities, we could have expected the dimensionality
of perturbations and responses to be so large that variability
distributions would be too complex to describe. However, the
process of assembly allowed for a simple behaviour to emerge:
a relationship between variability and the abundance of indi-
vidually perturbed species. In essence, this pattern predicts
that a species’ ability to buffer purely exogenous (immigra-
tion-type) perturbations is proportional to that species abun-
dance. This pattern is not a universal feature of all
communities, but will occur in diverse communities with rela-
tively strong interactions and no community-wide structuring
of the species interaction network (Appendix S7; see also Bar-
bier et al. 2018). In conjunction to this simple pattern, the
perturbation type determines species-specific contributions to
the variability distribution, in a way that allows both common
and rare species to drive community-wide variability patterns.

Figure 6 Different perturbation types yield contrasting diversity–stability relationships, with stability quantified as invariability I . We generated random

communities of increasing species richness S and computed their invariability distribution in response to random perturbations (1000 communities per

species richness; 1000 perturbations per community). Full line: median invariability, dark-shaded region: 5–95th percentile, light-shaded region: minimum

to maximum realised values. The 9-marks correspond to the analytical approximation for the median, the dots to the analytical formula for the worst-

case. Dashed line is asymptotic resilience R1. For immigration-type perturbations (a = 0, blue), diversity begets instability, with R1 following worst-case

invariability. For demographic-type perturbations (a = 1, green), the trend is ambiguous. For environmental-type perturbations (a = 2, red), all realised

values of invariability increase with S.
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This is reminiscent of diversity measures (Hill 1973), some of
which (e.g. species richness) are sensitive to the presence of
rare species, while others are mostly indicative of the distribu-
tion of abundant species (e.g. Simpson diversity index).
These connections with different diversity metrics can

explain contrasting trends in stability (sensu invariability) as a
function of species richness. That the response to immigration-
type perturbations is driven by the least abundant species leads
to a negative diversity–invariability relationship. Indeed,
mean-case invariability is driven by the trend of species aver-
age abundance (cf. Appendix S8), which generally decreases
with species richness. In contrast, in response to demographic
perturbations, species contributions to variability can be inde-
pendent of their abundance. In this case, variability is not
expected to follow trends in abundance statistics, so that diver-
sity–invariability patterns can be less predictable and harder to
interpret. Finally, although common species buffer exogenous
perturbations efficiently, they are also the most affected by
environmental-type perturbations. This leads to a propor-
tional relationship between average abundance and mean-
case variability. Since mean abundance typically decreases
with species richness, we get a positive diversity–invariability
relationship.

Implications for empirical patterns

We showed that species abundances greatly affect variability
distributions. This new insight has broad consequences. For
example, it has been reported that ecosystem-level and popu-
lation-level stability tend to increase and decrease, respec-
tively, with increasing diversity (Jiang & Pu 2009; Campbell
et al. 2011). Ecosystem-level stability is often quantified based
on the variability of total biomass, which gives, by construc-
tion, a predominant weight to abundant species. In contrast,
averages of single-species variabilities have been used to mea-
sure population-level stability (Tilman 1996). These averages
are strongly affected, and can even be fully determined, by
rare, highly variable species (Haegeman et al. 2016). Thus,
here as well as in our theoretical results (Fig. 6), stability met-
rics governed by common, or rare, species tend to generate,
respectively, positive and negative diversity–stability relation-
ships. It would be interesting to test whether this observation
holds more generally, for example if it can explain the results
of Pennekamp et al. (2018), who found that a stability metric
based on community-level variability increases with diversity,
while a stability metric related to community-level resistance
decreases.
The type of perturbations affects which species abundance

class contributes most to variability. In turn, the physical size
of the system considered affects which perturbation type dom-
inates. This is well known in population dynamics (Engen
et al. 2008), but it also transposes to the community level. At
small spatial scales, implying small populations, we may
expect variability to be driven by demographic stochasticity.
At larger scales, implying larger populations, demographic
stochasticity will be negligible compared with environmental
perturbations. Just as changing the perturbation type trans-
forms the respective roles of common and rare species, pat-
terns of variability at different scales should reflect different

aspects of a community (Chalcraft 2013), associated to differ-
ent species abundance classes (abundant species at large spa-
tial scales, rare/rarer species at small spatial scales).
In empirical systems for which different perturbation types

can be applied experimentally, our theoretical predictions
could be directly tested. In general, however, empirically
determining the perturbation type might be a non-trivial task.
To develop suitable methods, it might be helpful to first
understand the link between the variability–abundance pat-
terns (see Figs 4 and 5) and Taylor’s law (Taylor 1961). The
latter is an empirically accessible pattern, relating the mean
and variance of population sizes. We studied the behaviour of
the community response to an individual species perturbation,
while Taylor’s law focuses on the individual species response
to a perturbation of the whole community. This duality also
suggests that Taylor’s law is, at the community level, strongly
affected by species interactions. This is known (Kilpatrick &
Ives 2003), yet our approach could shed new light on the
information regarding species interactions and other dynami-
cal traits, actually contained in community-level Taylor’s
laws.

On the dimensionality of stability

We noted a connection between variability and asymptotic
resilience, the most popular notion in theoretical studies
(Donohue et al. 2016). We showed that asymptotic resilience
is comparable to the largest variability in response to a immi-
gration-type perturbation, which is often a perturbation of the
rarest species (first panel of Fig. 4). While asymptotic resili-
ence is sometimes considered as a measure representative of
collective recovery dynamics, we previously explained why
that this is seldom the case (Arnoldi et al. 2018). The asymp-
totic rate of return to equilibrium generally reflects properties
of rare ‘satellite’ species, pushed at the edge of local extinction
by abundant ‘core’ species. In contrast, short-time return rates
are typically controlled by abundant species and can exhibit
qualitatively different properties.
The multiple dimensions of variability are related to the

multiple dimensions of return times. Variability is an integral
measure of the transient regime following pulse perturbations
that is a superposition of responses to various pulses, some of
which have just occurred and are thus hardly absorbed, while
others occurred long ago and are largely resorbed. If abun-
dant species are faster than rare ones (the case in complex
communities, see Appendix S7), if they are also more strongly
perturbed (e.g. by environmental perturbations), the bulk of
the transient regime will be short: variability in response to
environmental perturbations is associated with a short-term
recovery. By contrast, if all species are, on average, equally
displaced by perturbations (e.g. by immigration-type perturba-
tions), rare species initially contribute to the overall commu-
nity displacement as much as do abundant ones. Since their
recovery is typically very slow, the transient regime will be
long: variability in response to immigration-type perturbations
is associated with a long-term recovery.
Ecologists have long acknowledged the multifaceted nature

of ecological stability (Pimm 1984; Grimm & Wissel 1997;
Ives & Carpenter 2007; Donohue et al. 2016); but here, we
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show that a single facet (variability) is in itself inherently mul-
tidimensional, thus suggesting that links across facets can be
subtle. Short-term return rates may be linked with environ-
mental variability, but environmental variability may have
nothing to do with immigration-type variability, the latter
possibly related with long-term return rates and driven by rare
species. Because measures can be determined by different spe-
cies abundance classes, we should not expect general and sim-
ple connections to hold between facets of ecological stability.

CONCLUSION

The multidimensional nature of variability can lead to con-
flicting predictions, but once this multidimensionality is
acknowledged, it can be used to extensively probe the dynami-
cal properties of a community. In particular, in species-rich
systems, we revealed a generic pattern emerging from ecologi-
cal assembly, relating species abundance to their variability
contribution. This allowed connections to be drawn between
variability and statistics of abundance distributions. We
argued that similar patterns should underlie ecosystem
responses to other families of perturbations (e.g. pulse pertur-
bations). Therefore, we conclude that embracing the whole set
of ecosystem responses can help provide a unifying view on
ecological stability and shed new light on the meaning of
empirical and theoretical stability patterns.
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