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Introduction

Biological reactors are commonly used to remove pollu-
tants from wastewater. One standard technology is the two-
step activated sludge (AS) process. Both in the reaction and
the settling tank, bacteria naturally aggregate and form flocs.
It is well known—but poorly understood—that both floc for-
mation and settling capacity strongly depend on the loading
rate. To optimize this bioprocess it is, therefore, necessary to
better understand the flocculation phenomenon.

Mathematical modeling has proven to be a valuable tool in
the study of wastewater treatment plants. The activated
sludge models describe the different biological processes (for
example, chemical oxygen demand removal, (de) nitrification
and phosphorus removal) involved in the AS process. Its
core consists of the mass-balance equations, including the
reaction kinetics as a function of the limiting substrates,
which read in their simplest form

where x is the biomass concentration, s the substrate concen-
tration, h(s) the specific growth rate, D the dilution rate, and
sin the substrate concentration in the inflow.

The description of floc formation and settling remains the
weakest part of AS models. The problem has been studied
by a variety of approaches (see1,2 for reviews). Population
balance models (PBM) describe floc aggregation and break-
age and allow to compute the floc-size distribution as a func-

tion of time.3,4 Computational-fluid dynamics (CFD) simula-
tors describe the hydrodynamics in the clarification tank and
try to predict the settling properties of the flocs.5 Individual-
based models (IBM) take both physicochemical and biologi-

cal processes into account at the level of a single floc.6

These modeling approaches have in common a high-dimen-
sional parameter space. Although these parameters can be
identified from experiments, the resulting model is often too
complex to provide insight in the governing mechanisms.
Moreover, to compute the settling properties of the ensemble of
interacting flocs in the clarifier, one has to combine a CFD with
a PBM approach, which leads to even more intricate models.

Instead of using advanced simulators, we propose to take
the simple model (Eq. 1) as a starting point. In particular, we
investigate how these equations are modified when the bio-
mass is organized in flocs. We propose a PBM-like model
where both the floc interactions (as in standard PBM), and
the bacteria growth are included. This qualitative model is

dx

dt
¼ hðsÞx� Dx

ds

dt
¼ �hðsÞxþ Dðsin � sÞ: ð1Þ
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sufficiently transparent to be manipulated analytically. Our
approach is primarily intended to model the floc dynamics in
the reaction tank, where both physicochemical and biological
processes have to be taken into account. Nevertheless, our
model can also be useful to check the common assumption
of PBM that biological growth can be neglected in the set-
tling tank.

Our analysis naturally leads to an effective model of the form

dx

dt
¼ hðs; xÞx� Dx

ds

dt
¼ �hðs; xÞxþ Dðsin � sÞ: ð2Þ

Note that the specific growth rate h(s,x) depends both on the
substrate concentration s, and the biomass concentration x, in
contrast with the substrate-dependent growth rate h(s) of
model (Eq. 1). The specific growth rate h(s,x) is called
density-dependent. In fact, density-dependent growth rates
have been proposed to describe bioreactor kinetics more accu-
rately.7,8 From an ecological point of view, this change has
important consequences, as it allows microorganisms to coex-
ist in a medium where classical, that is, substrate-dependent,
models predict extinction by wash-out.

This work is not the first to study the influence of a heter-
ogeneous biomass structure on the growth rate (see, for
example,9,10). However, we present here, to the best of our
knowledge, an original derivation of an effective model with
density-dependent growth dynamics, starting from a PBM
description including bacterial growth.

The article is organized as follows. First, we introduce the
bioreactor model, including bacterial growth, floc aggregation
and breakage, and hydrodynamics. Next, we present an analyti-
cal study, under the hypothesis that the timescale associated with
the floc interactions is much shorter than the other processes.
We show analytically how this hypothesis leads to a density-
dependent growth rate. Finally, we discuss some numerical com-
putations, that go beyond the hypothesis of separate timescales.

Flocculation Model for Growing Bacteria

Consider a bioreactor in which a biomass grows on a sub-
strate. The density of the biomass is denoted by x, the den-
sity of the substrate by s. The biomass consists of bacteria
which naturally aggregate in flocs. A floc containing n bacte-
ria will be denoted by Fn. Define un as the density of flocs of
size n. Expressing the densities x resp. un as the number of
particles (bacteria resp. flocs) per unit of volume, we have

x ¼
X1
n¼1

nun: (3)

The dynamics of the floc densities un is given by

dun
dt

¼ dun
dt

� �
bacterial growth

�D un þ dun
dt

� �
floc interaction

: (4)

The second term in the righthand side represents the bacte-
ria disappearing in the effluent of the reactor with dilution
rate D. The two other terms are now described in more detail.

The only bacterial growth present in our model is through
cell division. As a bacterium present in a floc of size n divides,

we assume the daughter bacteria to stick to the floc, which will
then consists of nþ1 bacteria. This growth can be written as

Fn ! Fnþl with reaction rate hnðsÞ: (5)

As we assume the reactor to be perfectly mixed, all flocs have
the same substrate density s available. However, the depend-
ency of the growth rate hn(s) on the floc size n takes into account
that bacteria at the surface of the flocs have easier access to the
substrate than the bacteria inside the flocs. While realistic func-
tions n ? hn(s) could be derived from detailed models,6,11 our
analysis does not require such an explicit expression.

The corresponding part of the dynamics is

du1
dt

� �
bacterial growth

¼ �h1ðsÞu1
dun
dt

� �
bacterial growth

¼ hn�1ðsÞun�1 � hnðsÞun; n � 2: ð6Þ

Indeed, a growth event Fn ? Fnþ1 corresponds to the con-
sumption of a floc of size n and the production of a floc of
size nþ1. Mass action kinetics are assumed for this reaction.

The floc interactions we consider are the aggregation of
two flocs to form one bigger floc and the breakage of one
floc into two smaller ones. As Eq. 4 is continuous in time,
processes involving three or more flocs are implicitly
included. The floc interactions can be written as

Fm þ Fn ! Fmþn with reaction rate am;n

Fmþn ! Fm þ Fn with reaction rate bm;n: ð7Þ
Many studies have been carried out to obtain these coeffi-
cients both theoretically2 and experimentally.3,4 Again, our
analysis does not need explicit expressions for the reaction
rates am,n and bm,n.

The corresponding part of the dynamics is

dun
dt

� �
floc interaction

¼
Xbn2c
m¼1

am;n�mumun�m�
X1
m¼1

ð1þ dm;nÞam;numun

þ
X1
m¼1

ð1þ dm;nÞbm;numþn�
Xbn2c
m¼1

bm;n�mun; ð8Þ

where bxc is the largest integer smaller than x, and dm,n
equals 1 when m ¼ n, and 0 otherwise. These are the stand-
ard PBM equations,12 in which, for example, the first term
corresponds to the aggregation of two flocs to form a floc Fn.

Fast Flocculation Dynamics

The application of PBMs to the AS process assumes that
the flocculation can be uncoupled from other processes. It is
argued that in the settling tank the substrate concentration s
is sufficiently low to justify this assumption. We now derive
an effective model for this situation.

To make the separation in timescales explicit, we intro-
duce a small parameter e > 0

dun
dt

¼ dun
dt

� �
bacterial growth

�D un þ 1

e
dun
dt

� �
floc interaction

: (9)
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Taking e ? 0, we introduce a sharp distinction between
� the fast dynamics, consisting of the floc interaction, for

times t � e, and
� the slow dynamics, consisting of the bacterial growth

and the dilution, for times t � 1.
The idea now is as follows. On the short timescale, the sys-

tem evolves to fast dynamics equilibria (un
fast(x)), parameter-

ized by the total bacteria density x. On the large timescale,
the system evolves on the manifold of these equilibrium dis-
tributions. As this manifold is 1-D and parameterized by x,
we obtain autonomous dynamics for the biomass density x.

First, we look at the short timescale and the flocculation
interactions. The reaction scheme (Eq. 7) suggests an analogy
between chemical reactions and floc interactions. Indeed, a
derivation like the one in equilibrium chemistry yields a set of
conditions for the equilibrium between flocs of different size

Km;n ¼ umþn

umun
; for all m; n;

with Km,n the equilibrium constant, independent of any den-
sity uk. As these conditions are not independent, we consider
a basis of floc interactions, that is, a set of independent inter-
actions from which the others can be obtained by taking lin-
ear combinations. One such basis is given by

nF1 Ð Fn with equilibrium constant Kn:

The equilibrium conditions then read

un ¼ Knu
n
1; for all n � 2:

All floc densities un for n � 2 are expressed in terms of u1,
which for a given biomass density x can be obtained from
Eq. 3. It is not difficult to prove that this equilibrium is
unique, and thermodynamics guarantees that it is stable.

Next, we consider the other processes on the large time-
scale. We write the dynamics for the total bacteria density x
by combining Eqs. 3, 4, 6 and 8

dx

dt
¼

X1
n¼1

hnðsÞun � Dx:

We then replace the floc densities un by the fast dynamics
equilibrium (un

fast(x))

dx

dt
¼

X1
n¼1

hnðsÞufastn ðxÞ � Dx ¼ hðs; xÞx� Dx;

where we have introduced the specific growth rate h(s,x)

hðs; xÞ ¼
P1
n¼1

hnðsÞufastn ðxÞ
x

: (10)

If the floc growth rate hn(s) is proportional to the floc size n,
a factor x can be divided out in Eq. 10, and we obtain a sub-
strate-dependent growth function h(s), see Eq. 1. In all other
cases, we find a genuine density-dependent growth rate
h(s,x), see Eq. 2.

Slow Flocculation Dynamics

For the reaction tank, assuming the parameter e to be
small is not obvious. Literature reports flocculation times of
the order of 1 to 10 min,4,13 to be compared with bacterial
growth times of 1 h to 1 day, and with retention times of
a few hours to a few days. We use numerical simulations
to investigate how well density-dependent growth (Eq. 2)
approximates the full flocculation model (Eq. 9).

The parameter values used in the simulations are given in
Table 1. The floc growth rate behaves as hn(s) � na. The
growth rate per bacterium decreases with increasing floc size,
indicating a limited access to the substrate inside the flocs.
The exponent a ¼ 2/3 can be interpreted as a surface-to-vol-
ume ratio for spherical flocs. Instead of considering all possi-
ble floc interactions (Eq. 7), we assume that only individual
bacteria attach to and detach from the flocs. Therefore,
am,n ¼ bm,n ¼ 0 if both m = 1 and n = 1. Moreover, the
aggregation and breakage coefficients behave as am,1 � ma

and bm,1 � ma, which can again be considered as the surface
of spherical flocs.

From a numerical point of view, the infinite sequence of
dynamical (Eq. 9) were truncated at n ¼ 300. By appropri-
ately choosing the parameters and the initial conditions, we
took care that this truncation did not influence the simulation
results. Figure 1 compares the full dynamics (Eq. 9, together
with Eqs. 6 and 8), for different values of the parameter e
with the reduced dynamics (Eq. 2, together with Eq. 10). For
small e, the solutions of Eq. 9 for different initial conditions
converge rapidly (after a time of the order t � e) to each
other. The solution of Eq. 2 almost coincides with those of
the full dynamics, indicating that the latter can be approxi-
mated as dynamics on the manifold of distributions (un

fast(x)).
When e increases, the solutions for different initial conditions
differ more and more. This indicates that there are no longer
autonomous dynamics in the variable x, and, thus, no well-
defined specific growth rate.

We conclude that for larger values of e, the system cannot
be described by a dynamical equation like Eq. 2. Neverthe-
less, Figure 1 shows that for all values of e, the different ini-
tial conditions lead to the same equilibrium. On the other
hand, the nontrivial equilibrium of Eq. 2, satisfies h(s,x) ¼
D. If we want the reduced dynamics to predict the correct
equilibrium, the specific growth rate should satisfy this con-
dition. In this way, we obtain a well-defined density-depend-

Table 1. Parameter Values used in the Simulations

floc-growth
rate hn(s)

hn(s) ¼ h(s)na with a ¼ 2
3

bacterium
growth
rate h(s)

hðsÞ ¼ 0:2s
sþ6

aggregation
rates am,n

am;n ¼ madn;1 if m � n;
nadm;1 otherwise.

�
with a ¼ 2

3

breakage
rates bm,n

bm;n ¼ 0:1madn;1 if m � n;
0:1nadm;1 otherwise.

�
with a ¼ 2

3

dilution
rate D

D ¼ 0.04

inflow-
substrate
concentration sin

sin ¼ 20
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ent growth rate, which we call the specific growth rate at
equilibrium hequi(s,x).

Figure 2 plots the specific growth rate at equilibrium for
different values of the parameter e. For small e, the specific
growth rate at equilibrium coincides almost with the explicit
formula (Eq. 10). As e increases, the difference with Eq. 10
becomes substantial.

The reconstructed growth rates hequi(s,x) can now be used
to integrate Eq. 2. By construction, this model will tend to
the same equilibrium as the full model (Eq. 9). To test how
well it approximates the dynamics, we perturb the system out
of equilibrium and look at the resulting dynamics. As shown
in Figure 1, perturbations which disturb too heavily the floc-
size distribution cannot be correctly modeled by an equation
like Eq. 2. We therefore apply a perturbation in the dilution
rate D, which acts similarly on the different floc densities un.
Figure 3 shows that the reduced model predicts with rather
good precision the reaction of the full system to this pertur-
bation.

Conclusion

In this article, we investigated how flocculation influences
the bacterial growth dynamics in a bioreactor. In the context
of the activated sludge process, this coupling of physico-
chemical and biological phenomena is mostly relevant for
the reaction tank. In particular, we studied the possibility of
an effective model on the level of the biomass density, with-
out explicitly taking flocculation into account.

Such an effective description is only possible when the floc-
culation dynamics are sufficiently fast compared to the other
processes. In this case, the specific growth rate, which for iso-
lated bacteria depends only on the substrate density, gains an
additional dependence on the biomass density. It is interesting
to note that such a density-dependent growth rate has recently

Figure 1. Comparing full and reduced dynamics for relaxation to equilibrium.

The full dynamics (Eq. 9) for different e and the reduced dynamics (Eq. 2) are compared. Parameter values of Table 1 were used. The full
dynamics, shown in full line, were integrated for six initial conditions: three with x(0) 5 20 (un(0) 5 20 dn,1, un(0) 5 2 dn,10, and un (0) 5
0.2 dn,100), and three with x(0) 5 5 (un(0) 5 5 dn,1, un(0) 5 0.5 dn,10, and un (0) 5 0.05 dn,100). The reduced dynamics, shown in dashed
line, were integrated with initial conditions x(0) 5 20, and x(0) 5 5. (a) e 5 0.001; (b) e 5 0.01; (c) e 5 0.1, and (d) e 5 1.

Figure 2. Specific growth rate at equilibrium.

The specific growth rate at equilibrium hequi(s,x) as a func-
tion of the biomass density x for a fixed substrate density
s 5 6. Parameter values of Table 1 were used. The curves
in full line correspond to, from bottom to top, e 5 1, e 5
0.1 and e 5 0.01. The specific growth rate (Eq. 10) is
shown in dashed line.
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been proposed as a mechanism to explain the coexistence of
many bacterial species growing on a limited number of sub-
strates. We will investigate the link between flocculation and
species coexistence in a forthcoming contribution.

When the flocculation dynamics have timescales comparable
to the bacterial growth, the details of the floc-size distribution do
affect the global system dynamics. In that case, dynamics autono-
mous in the biomass density do not exist, and the notion of specific
growth rate is ill-defined. However, if the reactor evolves such
that the floc-size distribution remains equilibrated, it makes sense
to define a specific growth rate at equilibrium. We showed in a
simple example, that such a growth rate, which is again density-
dependent, can yield an accurate description of the system dynam-
ics.
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Figure 3. Comparing full and reduced dynamics for response to perturbation.

The full dynamics (Eq. 9) and the reduced dynamics (Eq. 2) are compared for a step in the dilution rate D. (a) Excitation in the dilution
rate D, and (b) reaction of the two models. Parameter values of Tab. 1 were used. The full line corresponds to the system (Eq. 9) with e ¼
1. The dashed line corresponds to the system (Eq. 2) with specific growth rate hequi(s,x). For both simulations, the initial condition was
taken as the equilibrium for dilution rate D ¼ 0.04.
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