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Abstract

The zero-sum assumption is one of the ingredients of the standard neutral model of biodiversity by Hubbell. It states that the

community is saturated all the time, which in this model means that the total number of individuals in the community is constant over

time, and therefore introduces a coupling between species abundances. It was shown recently that a neutral model with independent

species, and thus without any coupling between species abundances, has the same sampling formula (given a fixed number of individuals

in the sample) as the standard model [Etienne, R.S., Alonso, D., McKane, A.J., 2007. The zero-sum assumption in neutral biodiversity

theory. J. Theor. Biol. 248, 522–536]. The equilibria of both models are therefore equivalent from a practical point of view. Here we show

that this equivalence can be extended to a class of neutral models with density-dependence on the community-level. This result can be

interpreted as robustness of the model, i.e. insensitivity of the model to the precise interaction of the species in a neutral community. It

can also be interpreted as a lack of resolution, as different mechanisms of interactions between neutral species cannot be distinguished

using only a single snapshot of species abundance data.

r 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

Neutral biodiversity theory has received much attention
since it was revived by Hubbell (2001) and major theoretical
advances have been made (reviewed, for instance, in Etienne
and Alonso, 2007). Most authors have focused on its
most essential assumption, the neutrality assumption, which
states that all individuals, regardless of species, behave
identically under identical circumstances. Although this
assumption seems unrealistic for most ecological commu-
nities, neutral theory has been recognized as providing
useful null models for comparison with alternative models
incorporating species differences and has sharpened our
tests to detect deviations from neutrality (Alonso et al.,
2006; McGill et al., 2006). We need to be aware, however,
that rejection of neutral models failing such tests may not be
e front matter r 2008 Elsevier Ltd. All rights reserved.
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(completely) due to the neutrality assumption; it may be due
to other assumptions in the model, which is, after all, only a
single, particular implementation of neutral theory (Etienne,
2007).
In the standard neutral model of biodiversity (Hubbell,

2001), such an assumption is the zero-sum assumption.
It states that the individuals in an ecological community
play a zero-sum game: each death or emigration event is
immediately followed by a birth or immigration event,
such that the community remains saturated and therefore
introduces a coupling between species abundances. If the
resources (e.g. space, light) are constant over time, the
zero-sum assumption implies that the total number of
individuals in the community is also constant over time. In
the standard neutral model it is indeed assumed that
community size is fixed. In this paper we will refer to this
model as the fixed-community-size (fcs) model.
It was shown recently that a neutral model with

independent species—hereafter called the independent-
species model (ind)—and thus without any coupling
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Table 1

Explanation of mathematical symbols

Symbol Explanation

SM Number of species in metacommunity

~p ¼ ðp1; . . . ; pSM
Þ Relative abundance vector of metacommunity

~N ¼ ðN1; . . . ;NSM
Þ Abundance vector of local community

JL ¼
P

k Nk Local community size

~n ¼ ðn1; . . . ; nSM
Þ Abundance vector of sample

J ¼
P

k nk Sample size

Pfcs;Pind ;Pcdd Equilibrium probability distribution for the

fixed-community-size model, the independent-

species model, and the community-level

density-dependent model, respectively. Thus,

Pcdd ð~N j . . .Þ denotes the probability of

abundance vector ~N, Pcdd ðJL j . . .Þ denotes the
probability of local community size JL, etc.

Pfcs;hyp;Pind;hyp;Pcdd ;hyp Equilibrium probability distribution of the

sample composition (i.e. the abundance vector

~n) under sampling without replacement,

described by the hypergeometric distribution

b, d, l Birth, death, and immigration rate; constant

for the independent-species model, and a

function of the local community size JL for

the density-dependent model

gNk
; rNk

Rate of abundance increase (by birth and

immigration) and decrease (by death) of

species k with abundance Nk; constant for the

independent-species model, and a function of

the local community size JL for the density-

dependent model

I Fundamental dispersal number, or ratio of

immigration rate l and birth rate b for the

independent-species and density-dependent

model

R Ratio of birth rate b and death rate d for the

independent-species and density-dependent

model
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between species abundances has the same sampling
formula (given a fixed number of individuals in the sample)
as the fixed-community-size model (Etienne et al., 2007).
The equilibrium of both models are therefore equivalent
from a practical point of view. In this paper we will show
that this equivalence can be extended to a class of neutral
models with density-dependence on the community-level.
This class includes the fixed-community-size model and the
independent-species model as special cases.

We start by giving an alternative proof for the sampling
formula of the independent-species model in equilibrium,
because it provides a nice and simple introduction to our
extension to community-level density-dependent (cdd)
neutral models. This alternative proof is based on the fact
that the equilibrium state of the independent-species model
can be written as a combination of the equilibrium states of
fixed-community-size models for different community
sizes. Next, we introduce the novel neutral models with
community-level density-dependence, and show that their
equilibrium state satisfies the same property. This means
that the density-dependent neutral models all have the
same sampling formula as the fixed-community-size model
and the independent-species model.

2. Independent species

We formulate the independent species model as in
Etienne et al. (2007), so it only differs from the fixed-
community-size model in that there is no coupling between
the population sizes (abundances) of the different species.
To briefly summarize, the local community receives
immigrants from the metacommunity. This metacommu-
nity consists of SM species, and is assumed to be so large
that only relative abundances have to be taken into
account. We denote the relative abundance of species k

in the metacommunity by pk (see Table 1 for an overview
of our notation). Because the local community is smaller
than the metacommunity and because it is dispersal-
limited, it contains usually (much) fewer species than
the metacommunity, but potentially it can contain all
SM species, so we will keep track of the abundances of
all SM species, even if they are (temporarily) zero. We
denote the abundance of species k in the local community
by Nk and define the local community abundance vector,
~N ¼ ðN1; . . . ;NSM

Þ. We denote the total abundance of the
local community by JL, that is,

JL ¼
X

k

Nk.

The local community dynamics are determined by the
repetitive occurrence of birth, death and immigration
events. Due to the neutrality assumption, the birth rate
per individual (denoted by b), the death rate per individual
(denoted by d), and the immigration rate from meta-
to local community (denoted by l) do not depend on
the identity of the involved species. For species k with
abundance Nk, the rate of abundance increase gNk

and the
rate of abundance decrease rNk
are given by

gNk
¼ bNk þ lpk,

rNk
¼ dNk.

We can then write down the corresponding master
equation (Van Kampen, 1992). This is a differential
equation for the probability PðNk; tÞ that at time t the
abundance of species k in the local community is Nk:

d

dt
PðNk; tÞ ¼ gNk�1

PðNk � 1; tÞ þ rNkþ1PðNk þ 1; tÞ

� gNk
PðNk; tÞ � rNk

PðNk; tÞ. (1)

All species k ¼ 1; . . . ;SM satisfy such an equation, without
any coupling between them. Because the species are
independent, the probability Pð~N; tÞ that at time t

the abundance vector is ~N can be written simply as a
product of the probabilities PðNk; tÞ for all the species
k ¼ 1; . . . ;SM :

Pð~N; tÞ ¼
YSM

k¼1

PðNk; tÞ. (2)
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Eqs. (1) and (2) specify mathematically the independent-
species model.

In this paper we are exclusively interested in the
equilibrium probability distribution for the abundance vector
~N, Pð~NÞ. For the independent-species model this boils down,
according to (2), to finding the equilibrium probability
distribution of the abundance Nk of each species, PðNkÞ.
This can be found by requiring that the right-hand side of (1)
vanishes for all Nk ¼ 0; 1; 2; . . . : The solution, which we
denote by Pind , is given by (Kendall, 1948)

PindðNk j pk; I ;RÞ ¼ ð1� RÞIpk
RNk ðIpkÞNk

Nk!
, (3)

with R ¼ b=d and I ¼ l=b, and where we used the
Pochhammer notation

ðaÞn ¼
Yn�1
k¼0

ðaþ kÞ.

To show this, we first note that in the state Pind and for each
species k, the frequency of transitions from Nk þ 1 to Nk

equals the frequency of transitions from Nk to Nk þ 1:

rNkþ1PindðNk þ 1 j pk; I ;RÞ

¼ dðNk þ 1Þ
RðIpk þNkÞ

Nk þ 1
Pind ðNk j pk; I ;RÞ

¼ ðlpk þ bNkÞPind ðNk j pk; I ;RÞ

¼ gNk
PindðNk j pk; I ;RÞ. (4)

Therefore, the right-hand side of (1) becomes

gNk�1
Pind ðNk � 1 j pk; I ;RÞ þ rNkþ1Pind ðNk þ 1 j pk; I ;RÞ

� gNk
PindðNk j pk; I ;RÞ � rNk

PindðNk j pk; I ;RÞ

¼ ðrNkþ1PindðNk þ 1 j pk; I ;RÞ � gNk
PindðNk j pk; I ;RÞÞ

� ðrNk
PindðNk j pk; I ;RÞ � gNk�1

�PindðNk � 1 j pk; I ;RÞÞ

¼ 0� 0 ¼ 0,

so the right-hand side of (1) indeed vanishes when we
substitute (3). The fact that the terms cancel out two by two
is a general property of this kind of master equation, and is
called detailed balance, as every elementary process is
balanced by its inverse process (Van Kampen, 1992, Chapter
5) due to (4). Note that the prefactor in (3) is such that the
probabilities PindðNk j pk; I ;RÞ sum to one. A technical detail
the importance of which will become clear in the next section:
in order that this sum converges, we have to assume that
Ro1 or bod.

The equilibrium probability distribution Pind of the
abundance vector ~N for the independent-species model
follows from (2) and (3):

Pind ð~N j~p; I ;RÞ ¼
Y

k

Pind ðNk j pk; I ;RÞ

¼ ð1� RÞI R
P

k
Nk
Y

k

ðIpkÞNk

Nk!
. (5)
In contrast with Hubbell’s neutral model with fixed-
community-size, the size of the local community

JL ¼
X

k

Nk

varies over time in the independent-species neutral model.
Even in the equilibrium state the community size fluctuates.
Its probability distribution, denoted by Pind ðJL j~p; I ;RÞ,
can be computed as follows:

Pind ðJL j~p; I ;RÞ ¼
X

~N:
P

k
Nk¼JL

Pind ð~N j~p; I ;RÞ

¼ ð1� RÞI RJL
ðIÞJL

JL!
, (6)

where the sum is over all abundance vectors that
correspond to community size JL. The species-independent
distribution Pind ð~N j~p; I ;RÞ, given by (5), is closely related
to the equilibrium distribution for the fixed-community-
size model, which we denote by Pfcsð~N j~p; I ; JLÞ. The latter
is given by (Etienne and Alonso, 2005; Etienne et al., 2007;
Rannala, 1996)

Pfcsð~N j~p; I ; JLÞ ¼
JL!

ðIÞJL

Y
k

ðIpkÞNk

Nk!
. (7)

Combining (5)–(7), we find

Pind ð~N j~p; I ;RÞ ¼ ð1� RÞI RJL
ðIÞJL

JL!
Pfcsð~N j~p; I ; JLÞ

¼ Pind ðJL j~p; I ;RÞPfcsð~N j~p; I ; JLÞ. (8)

The equilibrium distribution for the independent-species
model can thus be written as a combination of the
equilibrium distributions Pfcsð~N j~p; I ; JLÞ for fixed-commu-
nity-size models having different community sizes JL with
weights Pind ðJL j~p; I ;RÞ that are simply the probabilities
that the independent-species model has community size JL.
Stated differently, taking the independent-species equili-
brium distribution and conditioning on a given community
size JL, yields the fixed-community-size equilibrium dis-
tribution for that community size JL,

Pind ð~N j~p; I ;R; JLÞ ¼
Pind ð~N j~p; I ;RÞ

Pind ðJL j~p; I ;RÞ

¼ Pfcsð~N j~p; I ; JLÞ, (9)

where we used (8).
As noted by Etienne et al. (2007), the connection

between both models can be expressed on the level of
sampling properties. To show this, we consider a sample of
size JpJL from both equilibrium distributions (sampling
without replacement), and denote the sample abundance
vector by ~n ¼ ðn1; . . . ; nSM

Þ with

J ¼
X

k

nk.

The probability to obtain the sample abundance vector ~n
from the local community abundance vector ~N is given by
the multivariate hypergeometric distribution (as this is the
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appropriate distribution for sampling without replacement)

Phypð~n j ~N; JL; JÞ ¼

QSM

k¼1

Nk

nk

 !

JL

J

� � .

The sample abundance distribution for the fixed-commu-
nity-size model, denoted by Pfcs;hyp, is given by

Pfcs;hypð~n j~p; I ; JL; JÞ

¼
X
~N

Phypð~n j ~N; JL; JÞPfcsð~N j~p; I ; JLÞ, (10)

and the sample abundance distribution for the indepen-
dent-species model, denoted by Pind;hyp, is given by

Pind ;hypð~n j~p; I ;R; JÞ

¼
X
JL

Pind ðJL j~p; I ;RÞ
X
~N

Phypð~n j ~N; JL; JÞ

�Pind ð~N j~p; I ;R; JLÞ, (11)

where the sums over ~N are taken over all abundance
vectors with community size JL and compatible with the
sample abundance vector ~n.

The equilibrium distribution of both models obey
identical sampling formulas, that is,

Pind ;hypð~n j~p; I ;R; JÞ ¼ Pfcs;hypð~n j~p; I ; JL; JÞ. (12)

Eq. (12) can be derived as follows. First we note the
sampling invariance of the fixed-community-size equili-
brium distribution (Etienne and Alonso, 2005)

Pfcs;hypð~n j~p; I ; JL; JÞ ¼ Pfcsð~n j~p; I ; JÞ. (13)

Then the derivation is straightforward:

Pind;hypð~n j~p; I ;R; JÞ

¼
X
JL

Pind ðJL j~p; I ;RÞ
X
~N

Phypð~n j ~N ; JL; JÞ

�Pind ð~N j~p; I ;R; JLÞ

¼
X
JL

Pind ðJL j~p; I ;RÞ
X
~N

Phypð~n j ~N ; JL; JÞ

�Pfcsð~N j~p; I ; JLÞ

¼
X
JL

Pind ðJL j~p; I ;RÞPfcs;hypð~n j~p; I ; JL; JÞ

¼
X
JL

Pind ðJL j~p; I ;RÞPfcsð~n j~p; I ; JÞ

¼ Pfcsð~n j~p; I ; JÞ

¼ Pfcs;hypð~n j~p; I ; JL; JÞ,

where we used (11) in the second line, (9) in the third line,
(10) in the fourth line, the law of total probability in the
sixth line, and (13) in the fifth and seventh line. Eq. (12)
was proved by Etienne et al. (2007) in the light of their
general sampling theory, but we have presented a different
derivation here, to introduce our extension to community-
level density-dependent neutral models. Also, although
perhaps trivial, the fact that we have detailed balance, has
not been stressed in the literature.

3. Community-level density-dependence

The independent-species equilibrium distribution has the
property that by conditioning on community size JL, one
retrieves the fixed-community-size equilibrium distribution,
see (9). Other neutral models can be constructed with the
same property. We introduce here a class of such models
with density-dependence relative to the community density
(instead of relative to the species density, see Discussion).
We will refer to this type of model as the community-level
density-dependent model.
In the independent-species model, the birth rate b, death

rate d and immigration rate l are constants. In the density-
dependent model, we take rates that depend on the
community size

JL ¼
X

k

Nk.

We denote them by bðJLÞ, dðJLÞ, and lðJLÞ, respectively.
For species k with abundance Nk, the rate of abundance
increase gNk

and the rate of abundance decrease rNk
also

depend on JL, and are given by

gNk
ðJLÞ ¼ bðJLÞNk þ lðJLÞpk,

rNk
ðJLÞ ¼ dðJLÞNk.

Moreover, we have to impose a condition on the birth
and immigration rates in order to keep the formulas
tractable: the fundamental dispersal number I (Etienne
and Alonso, 2005) must be independent of community size,
that is,

I ¼
lðJLÞ

bðJLÞ
is independent of JL. (14)

This assumption will be discussed below.
Our analysis of the density-dependent model is analo-

gous to the independent-species case in the previous
section. We first formulate the master equation. Due
to the coupling between species, we can no longer write
down an equation like (1) in terms of the abundance
of a single species. Also property (2) is no longer satisfied.
Instead, we have to consider the entire abundance vector
~N. Denoting by Pð~N; tÞ the probability that at time t the
abundance vector is ~N, the master equation reads

d

dt
Pð~N; tÞ ¼

X
k

gNk�1
ðJL � 1ÞPð~N �~ek; tÞ

þ
X

k

rNkþ1ðJL þ 1ÞPð~N þ~ek; tÞ

�
X

k

gNk
ðJLÞPð~N; tÞ �

X
k

rNk
ðJLÞPð~N; tÞ,

(15)
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where we used basis vectors ~ek with components

ð~ekÞl ¼
1 if k ¼ l;

0 otherwise:

�

Eq. (15) specifies mathematically the community-level
density-dependent model.

To find the equilibrium distribution of this model, we
require that the right-hand side of (15) vanishes for all
vectors ~N. Below we show that the solution to setting (15)
equal to zero, which we denote by Pcdd ð~N j~p; l;b; dÞ, is
given by

Pcdd ð~N j~p; l;b; dÞ ¼ Pcdd ðJL j~p; l; b; dÞPfcsð~N j~p; I ; JLÞ,

(16)

where the probability distribution of the local community
size JL satisfies

Pcdd ðJL j~p; l; b; dÞ ¼ Pcddð0 j~p; l;b; dÞ
ðIÞJL

JL!

YJL

k¼1

bðk � 1Þ

dðkÞ
.

(17)

The coefficients Pcddð0 j~p; l; b; dÞ follow from the require-
ment that the probabilities Pcdd ðJL j~p; l;b; dÞ must sum to
one:

Pcdd ð0 j~p; l;b; dÞ ¼ 1þ
X1
JL¼1

ðIÞJL

JL!

YJL

k¼1

bðk � 1Þ

dðkÞ

 !�1
.

To prove (16), we show, analogously to the independent-
species case considered above, that in the state Pcdd and
for each species k, the frequency of transitions from
population size Nk þ 1 (and total community size
JL þ 1) to Nk (and community size JL, all else being
equal) equals the frequency of transitions from Nk to
Nk þ 1:

rNkþ1ðJL þ 1ÞPcdd ð~N þ~ek j~p; l; b; dÞ

¼ ðdðJL þ 1ÞðNk þ 1ÞÞPcdd ðJL þ 1 j~p; l;b; dÞ

�Pfcsð~N þ~ek j~p; I ; JL þ 1Þ

¼ ðdðJL þ 1ÞðNk þ 1ÞÞ
I þ JL

JL þ 1

bðJLÞ

dðJL þ 1Þ
Pcdd ðJL j~p; l;b; dÞ

�
JL þ 1

I þ JL

Nk þ Ipk

Nk þ 1
Pfcsð~N j~p; I ; JLÞ

¼ ðbðJLÞðNk þ IpkÞÞPcdd ðJL j~p; l; b; dÞPfcsð~N j~p; I ; JLÞ

¼ ðbðJLÞNk þ lðJLÞpkÞPcdd ð~N j~p; l;b; dÞ

¼ gNk
ðJLÞPcddð~N j~p; l;b; dÞ, (18)

where we used (16) in the second line, (17) in the third line,
(7) in the fourth line, and (14) and (16) in the sixth line.
Here we see that the assumption of I being independent of
JL, as expressed in (14), is crucial. For the right-hand side
of the master equation (15), we then obtain

X
k

gNk�1
ðJL � 1ÞPcddð~N �~ek j~p; l;b; dÞ

þ
X

k

rNkþ1ðJL þ 1ÞPcdd ð~N þ~ek j~p; l;b; dÞ

�
X

k

gNk
ðJLÞPcdd ð~N j~p; l;b; dÞ

�
X

k

rNk
ðJLÞPcdd ð~N j~p; l;b; dÞ

¼
X

k

rNkþ1ðJL þ 1ÞPcdd ð~N þ~ek j~p; l;b; dÞ
�

�gNk
ðJLÞPcddð~N j~p; l; b; dÞ

�
�
X

k

rNk
ðJLÞPcddð~N j~p; l; b; dÞ

�

�gNk�1
ðJL � 1ÞPcdd ð~N �~ek j~p; l; b; dÞ

�
¼
X

k

0�
X

k

0 ¼ 0,

where we used (16) and (18). All terms cancel out two by
two, which is again an instance of detailed balance. Thus,
the right-hand side of (15) indeed becomes zero for the
solution (16).
We noted that the equilibrium distribution (5) for the

independent-species model only exists only if birth and
death rates satisfy bod. Analogously, we have to impose
some conditions on the functions b and d, in order to
guarantee existence and uniqueness of the equilibrium
distribution (16) and (17). These conditions basically
prevent the community size to grow without bound, by
imposing that the birth rate bðJLÞ does not exceed the
death rate dðJLÞ for large community size JL. A set of such
conditions is

bðJLÞ40 for all JLpM,

dðJLÞ40 for all JL,

dðJLÞXbðJLÞð1þ �Þ for all JL4M, (19)

for an integer M and a positive number �40. We refer to
Van Kampen (1992, Chapter 5) for a more elaborate
discussion.
By way of illustration, we show that a common model

for logistic growth satisfies these conditions. Consider an
immigration rate l independent of community size. In
order to satisfy condition (14), the birth rate b must also be
community-size independent. We assign density-depen-
dence to the death rate d:

dðJLÞ ¼ d þ ðb� dÞ
JL

K
,

with integer K and 0odob. To verify that conditions (19) are
fulfilled, one can take M ¼ K and � ¼ ð1=KÞð1� d=bÞ40,
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so that indeed

dðJLÞ ¼ d þ ðb� dÞ
JL

K

¼ d þ ðb� dÞ 1þ
JL � K

K

� �

¼ b 1þ
JL � K

K
1�

d

b

� �� �
Xbð1þ �Þ,

for JL4K . For JL ¼ K , the birth rate b equals the death
rate d, and thus K can be interpreted as a carrying capacity, in
the sense that at sizes larger than K the death rate exceeds the
birth rate. This does not imply, however, that the community
size cannot become larger than K. Immigration and stochastic
fluctuations may lead to community sizes that exceed the
carrying capacity K. This choice of birth and death rates is
just an example; density-dependence in the birth rate is also
possible as long as lðJLÞ=bðJLÞ is independent of JL. We
discuss this further below.

Obviously, the independent-species model is included in
the class of density-dependent models. One simply has to
take rates b and d independent of community size.
Conditions (19) then yield d4b40, as we found in the
previous section. Interestingly, also the model with fixed-
community-size JL can be reconstructed in the class of
community-level density-dependent models. To show this,
we take rates b and d as follows:

bðJL � 1Þ ¼ b and bðkÞ ¼ 0 for kaJL � 1,

dðJLÞ ¼ d and dðkÞ ¼ 0 for kaJL,

with bbd40, and the initial condition that the community
size is JL. If the community size equals JL, the only event
that can happen is the death of an individual (because
bðJLÞ ¼ 0 and, because of (14), lðJLÞ ¼ 0). The corre-
sponding decrease in community size is then quickly
(because bbd) followed by a new event that increase the
community size again (because dðJL�1Þ ¼ 0Þ. This closely
resembles Hubbell’s neutral model. In fact, the larger the
separation between time scales 1=db1=b, the better this
density-dependent model approximates the fixed-commu-
nity-size model. The community-size equilibrium distribu-
tion (17) is given by

Pcdd ðk j~p; l;b; dÞ ¼

d

bþ d
if k ¼ JL � 1;

b

bþ d
if k ¼ JL;

0 otherwise;

8>>>><
>>>>:

which is sharply peaked at JL (because bbd). Note,
however, that without the initial condition this model has
several equilibria, as a community with size kefJL � 1; JLg

will never change (because bðkÞ ¼ dðkÞ ¼ 0). This is
consistent with the fact that conditions (19) are not
satisfied for this model. To make the model satisfy
these conditions, we can alternatively take rates b and d
as follows:

bðkÞ ¼ a3 and dðkÞ ¼ a2 for all koJL,

bðkÞ ¼ a1 and dðkÞ ¼ a2 for k ¼ JL,

bðkÞ ¼ a2 and dðkÞ ¼ a3 for all k4JL,

with rates a1, a2 and a3 satisfying 0oa15a25a3. Whenever
the community has a size different from JL it moves with
very high probability in the direction of size JL. Again, the
larger the separation between time scales 1=a1b1=a2b1=a3,
the better this density-dependent model approximates the
fixed-community-size model. One can take M ¼ JL and
� ¼ a3=a2 � 140 to see that conditions (19) are satisfied.
The model has therefore a unique equilibrium distribution
Pcdd , for which the community-size distribution (17) is again
sharply peaked at JL.
Finally, the parallel between (8) and (16) suggests that

the fixed-community-size and density-dependent equili-
brium are strongly linked. Indeed, the density-dependent
equilibrium conditioned on community size JL gives the
fixed-community-size equilibrium distribution

Pcdd ð~N j~p; l;b; d; JLÞ ¼ Pfcsð~N j~p; I ; JLÞ,

a property analogous to (9). Together with the sampling
invariance of the fixed-community-size equilibrium (13), it
is easy to see that the class of density-dependent models all
have the same sampling formula:

Pcdd ;hypð~n j~p; l; b; d; JÞ ¼ Pfcs;hypð~n j~p; I ; JL; JÞ,

which is the equivalent of (12).

4. Discussion

In Hubbell’s neutral model the zero-sum assumption
couples different species together. Here we have shown that
the structure of the equilibrium distribution seems to be
rather insensitive to this assumption. Indeed, we have
introduced a class of models where species are coupled
differently, including the model with independent species,
and computed explicitly their equilibrium distribution. By
conditioning on JL we recover the fixed-community-size
equilibrium. Therefore, we also obtain identical sampling
formulas for all these models. Strictly, we have only
demonstrated equivalence of the sampling formulas for the
local community model, where the local community is
connected to a metacommunity with given relative abun-
dances pk. However, Etienne et al. (2007) have shown that
the metacommunity model can also be regarded as a
birth–death–immigration model where speciation is mod-
elled as immigration from an infinite species pool with all
relative abundances vanishingly small. Therefore our results
also apply to the metacommunity, and thus increase the
generality of the Ewens sampling formula that describes this
metacommunity (Ewens, 1972; Hubbell, 2001).
The class of neutral models introduced here have birth,

growth and immigration rates that depend on the commu-
nity size JL. We called this density-dependence relative to
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the community density, in contrast with density-depen-
dence relative to the species density, as discussed, e.g. in
Volkov et al. (2005). In the latter case, the birth, growth
and immigration rates of species k depend on the
abundance Nk of species k. Note that only density-
dependence relative to the community density is compa-
tible with a strict interpretation of neutrality, defined by the
condition that all individuals behave the same, irrespective
of the species they belong to. Density-dependence relative
to the species density is compatible with a broader notion
of neutrality, defined by the condition that all individuals
behave the same under the same intraspecific circum-
stances, which has been termed symmetry (Etienne and
Olff, 2005; Etienne, 2007; Alonso et al., 2008).

The community-level density-dependent models dis-
cussed here can be interpreted as perturbations of Hub-
bell’s neutral model. We showed that the equilibrium state
of these models can be computed explicitly, and that these
equilibria satisfy the same sampling formula as the fixed-
community-size model. We expect that these statements no
longer hold when the model is further perturbed, for
example by dropping assumption (14). Nevertheless, our
results suggest that Hubbell’s neutral model is just one
representative of a much larger class of models that all
yield similar ecological predictions. This could explain the
success of neutral community theory in reproducing
reasonable patterns, despite its unreasonable assumptions,
as also argued by Pueyo et al. (2007).

Our results hinge on the validity of assumption (14), and
this assumption therefore needs scrutiny. It states that
immigration and local reproduction must depend on
community size in the same way. This is not at all
unreasonable if the density-dependence occurs in the
establishment phase rather than the dispersal phase of
recruitment, because in the establishment phase it no
longer matters whether the propagule originated from a
local individual or an immigrant; they both ‘‘feel’’ the
presence of the community equally. In fact, one may argue
that this is even required by the neutrality assumption, and
therefore not an additional assumption. Put in mathema-
tical terms: if bðJLÞ ¼ b1sðJLÞ and lðJLÞ ¼ l1sðJLÞ where b1
and l1 are density-independent birth and immigration
rates and sðJLÞ is a density-dependent survival probability,
then I ¼ lðJLÞ=bðJLÞ ¼ l1=b1 is density-independent, as
required by assumption (14).

Our results shine some new light on the debate whether
different models of density-dependence can be distin-
guished using species abundance snapshot data. Although
the debate concerning different models of species-level

density-dependence (Chave et al., 2006; Volkov et al., 2006)
remains unsettled as long as sampling formulas for such
models are lacking, we find that a single snapshot of species
abundance data cannot distinguish between different
models of community-level density-dependence, that is,
different mechanisms of interactions between neutral
species. This may be interpreted as a lack of resolution of
such data. However, incorporating more information
(McGill et al., 2007), e.g. temporal and spatial (Etienne,
2007) variation in species abundance distributions or
phylogenetic structure, may again enable distinguishing
between these models.
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