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DNA reassociation kinetics, also known as Cot curves, were recently used by Gans and co-workers to estimate the
number of bacterial species present in soil samples. By reanalysing the mathematical model we show that rather than the
number of species, Simpson and Shannon diversity indices are encoded in the experimental data. Our main tool to
establish this result are the so-called Rényi diversities, closely related to Hill numbers, illustrating the power of these
concepts in interpreting ecological data. We argue that the huge diversity encountered in microbial ecology can be
quantified more informatively by diversity indices than by number of species.

Measuring microbial diversity is a challenging problem.
First of all, the concept of microbial species is still under
debate (Stackebrandt et al. 2002, Gevers et al. 2005). The
definition used for eukaryotes (sexual compatibility) is
indeed useless for bacterial and archaeal organisms. Next,
a choice should be made from the wealth of available
diversity notions (Magurran 2004). Richness, which takes
all species equally into account, seems to be less appropriate
due to the huge number of rare species in microbial
communities. Shannon or Simpson diversity and in
particular unifying concepts like Hill numbers (Hill
1973) look more promising. They give gradually stronger
weighting to dominant species than to rare ones in
quantifying diversity.

Although these diversity measures have been introduced
long ago, microbial diversity estimation still focuses mainly
on richness (Curtis et al. 2002, Venter et al. 2004, Gans
et al. 2005, Hong et al. 2006, Loisel et al. 2006, Schloss and
Handelsman 2006). Rare species, whose abundance is
difficult to assess experimentally, can then be dealt with
by assuming a species abundance distribution (SAD).
However, the number of possible SADs is large (Magurran
2004), and it is unknown which are the realistic ones in a
microbial context. Moreover, richness estimates often
depend on this SAD assumption, and differ sometimes by
orders of magnitude (Venter et al. 2004, Gans et al. 2005,
Hong et al. 2006, Loisel et al. 2006).

This problem seems to be invariably present for different
measurement techniques, and might deteriorate signifi-
cantly the estimation precision. Moreover, microbial diver-
sity estimation is also hindered by a number of intrinsic
experimental biases. The vast majority of DNA-based

techniques observe microbial communities through the
16S ribosomal RNA gene. This requires polymerase chain
reaction (PCR) amplification, introducing a bias which is
difficult to quantify (Forney et al. 2004). The PCR
fragments are then analysed either by fingerprints or by
molecular inventories. The former technique is rapid but
imprecise (Loisel et al. 2006); the latter uses rarefaction to
obtain diversity estimates, which poses a number of
statistical problems (Lande et al. 2003, Hong et al. 2006,
Schloss and Handelsman 2006). More recently, metage-
nomic approaches were used to assess microbial community
complexity (Venter et al. 2004). This extremely heavy
technique bypasses PCR amplification, but introduces an
equally unknown bias in the cloning step.

Rather different is the method based on reassociation
kinetics of single stranded DNA, because it avoids
amplification biases. Initially developed to determine the
amount of distinct DNA in a solution (Britten and Kohne
1968), it was later adapted to define phylogenetic related-
ness between bacterial organisms, and has by now become
the official technique to delineate bacterial species
(Stackebrandt et al. 2002). The first application of
reassociation kinetics in microbial ecology estimated bacter-
ial richness of forest soil (Torsvik et al. 1990a, 1990b). The
data analysis was recently extended to include SAD
assumptions (Gans et al. 2005), but the error was shown
to be much larger than the estimated richness (Bunge et al.
2006, Volkov et al. 2006).

However, we demonstrate here that accurate diversity
information is encoded in reassociation profiles. We first
introduce a technical tool, the Rényi diversity (Rényi 1961),
and briefly recall some of its properties relevant for ecology
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(Hill 1973). Next, we present a simple derivation of the
reassociation kinetics model of Gans et al. (2005).
A simulation study shows the tight connection between
diversity indices and reassociation times. The fitting error to
estimate diversity from experimental data has a clear
structure, revealing that rather than the number of species,
the diversity indices like Simpson’s and Shannon’s can be
accurately estimated. Finally, we speculate what this result
tells about the diversity concept in microbial ecology.

Rényi diversities

From a theoretical point of view, the analysis presented in
this paper is based on a diversity notion introduced by
Rényi (1961) in the context of information theory.
Denoting by ns the relative abundances, the Rényi
diversities are defined by:

Ra�
1

1 � a
ln
XS

s�1

na
s

with a]0, where for a�1 the limit a01 is understood.
Note that Rényi diversities are directly related to Hill
numbers (Hill 1973) by Ha�exp Ra.

Common diversity measures (Magurran 2004) like the
richness S, the Shannon diversity index H,
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are contained in the Rényi diversities. Indeed,

R0� ln S; R1�H; R2��ln C

Note that all these quantities depend on relative abun-
dances ns rather than absolute abundances Ns. One can
prove that Ra is a decreasing function of a, and thus
ln S]H]�ln C]0.

This study will exploit randomly assembled commu-
nities. To generate them, we use a small program written in
Matlab (The Mathworks Inc., Natick), that is available
upon request. First, we choose the number of species S, by
drawing log10 S uniformly in the interval [0,5]. Next, we
select the absolute abundance Ns for every species s,
independently and from the same species abundance
distribution (SAD). As our analysis will only require relative
abundances ns, we finally divide the absolute abundances
Ns by the total number of individuals asNs:

We focus on the following SADs:

. The lognormal distribution, given by the probability
density function
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Going from absolute to relative abundances eliminates
the parameter m. This can be proven by computing the

probability density function for the set of relative
abundances ns. The parameter s is drawn uniformly
in [0,4].

. The power-law distribution, given by the probability
density function

r2(N)�
z � 1

Nz
; N � [1;�[:

The parameter z is drawn uniformly in [1.2, 3].
. The truncated power-law distribution with exponent

z�1, given by the probability density function,

r3(N)�
1

aN
; N � [1; ea]:

Since the function 1/N is not integrable over [1;�[;
it is necessary to truncate the distribution for large N
(at ea in this case). The parameter a is drawn
uniformly in [0,20].

We believe that this set of one-parameter SADs with the
mentioned parameter ranges covers a broad range of
realistic community structures. Finally, we mention the
equal-abundance community, ns�1/S for all s, that has
been used in data interpretation of Cot curves (Torsvik
et al. 1990a, 1990b).

A model for reassociation kinetics

To make our exposition self-contained, we present an
elementary derivation of the model of reassociation kinetics
introduced by Gans et al. (2005). Denote the concentration
(mass/volume) of dissociated single stranded DNA mole-
cules of species s at time t by Cs(t). Using mass action
kinetics, the reassociation is described by the differential
equation

dCs

dt
��kC2

s

where we assume that the reassociation of species s is not
modified by the presence of other species. Supposing all
molecules are dissociated at the initial time t�0, the
solution of the differential equation is given by

Cs(t)�
Cs(0)

1 � kCs(0)t

To better fit experimental data from Escherichia coli
DNA, one introduces an empirical parameter, the retarda-
tion factor g,

Cs(t)�
Cs(0)

(1 � kCs(0)t)g

Note that both parameters k and g are assumed to be the
same for all species s. Our analysis will not depend on the
numerical value of the rate constant k. For the retardation
factor g we take g�0.45 (Gans et al. 2005). The total
concentration of dissociated molecules C(t) is given by
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with ns the relative abundances. We arrived at the formula
that Gans et al. (2005) used to describe reassociation curves.

The simplifying assumptions in the derivation of the
DNA reassociation kinetic model are numerous. For
example, species that contain repeated sequences (Britten
and Kohne 1968, Godde and Bickerton 2006), or sequences
shared by different species (Choi and Kim 2007) are not
taken into account. Also, the parameters k and g might differ
from species to species (Volkov et al. 2006), which would
complicate the model considerably. Finally, it has been
pointed out that a realistic renaturation model should also
include the dynamics after complementary strands have
made contact (Murugan 2003, Bunge et al. 2006).

Linking reassociation and diversity

Our present aim is not to improve the DNA reassociation
kinetic model, but to use Eq. 1 to clarify the diversity
estimation problem. In Cot curve analysis of microbial
communities, diversity has been interpreted exclusively as
richness. However, the seminal paper of Torsvik et al.
(1990a) suggested already a possible correlation with the
Shannon diversity index. Rényi diversities and Eq. 1 allow
us to systematically establish this link.

Our strategy is as follows. We randomly generate a large
number of communities, for which we compute, on one
hand, the Rényi diversities, and on the other, the Cot curve.
Our goal is to correlate both. To do so, we introduce
the reassociation times, defined as the time needed to
renaturate a given fraction, say b, of the initial mixture of
single stranded DNA molecules. We then establish a link
between Rényi diversities and reassociation times. More
precisely, we show that with any fraction b, we can associate
an index a, such that the Rényi diversity Ra can
be predicted (with small error) from the reassociation
time for that fraction b. This indicates that the Cot curve
model encodes a range of Rényi diversities.

Our argument starts by introducing the rescaled time
t�kC(0)t and the fraction c(t) of dissociated molecules at
time t. We then rewrite Eq. 1 as

c(t)�
XS

s�1

ns

(1 � nst)
g

The reaction rate k has been absorbed in the dimensionless
time t. The resulting function is monotonically decreasing
from 1 to 0, so we can define times tb such that c(tb)�b
for any b � ]0; 1[:

We fix a pair (a, b) and investigate the relationship
between the Rényi diversity Ra and the reassociation time
tb. For each of the 3 SADs (lognormal, power-law and
truncated power-law with z�1) we generate twice 1000
communities, and compute the Rényi diversity Ra and the
reassociation time tb. The relation Ra vs ln tb is fitted with
a linear function on the first set of 1000 communities.

Then, this function is used to predict Ra from tb for the
second set of 1000 communities. The root mean squared
error made in this prediction is denoted by E(a, b). We
repeat this procedure for every pair (a, b).

Figure 1 shows the contour plot of the error function
E(a, b). A curve of minimal error can be traced in the (a, b)
plane (shown in thick line). On this curve the error is
everywhere smaller than 0.1. It tends to b�1 for the
Simpson diversity a�2, but does not get to the species
richness a�0, even for small b. For pairs (a, b) off this
curve, the fitting error E(a, b) increases rapidly.

Horizontal sections at b�0.01, b�0.5 and b�0.99
are shown in Fig. 2. The error E(a, b�0.5) reaches a
minimum for the Shannon diversity a�1. This corre-
sponds to the time needed so that half of the DNA has
reassociated, a quantity often used in Cot analysis (Britten
and Kohne 1968, Torsvik et al. 1990a, 1990b). Similarly,
the error for b:1 has a minimum for the Simpson
diversity a�2. The section at b�0.01 has a minimum
at a:0.5, and the error increases steeply for smaller a.
Nevertheless, it is for small values b that the richness S has
to be found. The logarithm ln S cannot be estimated with
an error smaller than 1, indicating the poor correlation
between species richness and reassociation times.

Figure 3 shows the correlation between Ra and ln tb for
three pairs (a, b), corresponding to the best estimates for
logarithmic richness ln S, Shannon index H and Simpson
index �ln C. The errors are E(a�0, b�0.01)�1.1,
E(a�1, b�0.5)�0.07 and E(a�2, b�0.99)�0.02,
for diversities Ra that vary in the range 0 to 10. Thus, the
simulations suggest that estimation of the Simpson diversity
is more precise than the Shannon diversity. Moreover, the
Simpson diversity can be obtained for shorter reassociation
times, and thus smaller experimental errors.

An analytical expression for the link between Ra and ln
tb can be obtained by considering equal-abundance

Fig. 1. Fitting error E(a, b) for reassociation kinetics. Twice 1000
communities were generated for each of the three SADs
(lognormal, power-law and truncated power-law with z�1).
Rényi diversities Ra and reassociation times tb were computed.
The first set of communities was used to construct a linear fit Ra vs
ln tb; the second set to compute the corresponding fitting error.
This error E(a, b) has a valley-like structure, the bottom of which
is shown in thick line. The thin lines are, for increasing distances
from the thick line, the 0.2, 0.4, 0.6, 0.8 and 1 level curves.
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communities. In that case, ns=1/S for all s, Ra�ln S for all
a, and

c(t)�
1�

1 �
t
S

�g such that tb�S

�
b
�

1

g�1

�

Therefore, the relation between Ra and ln tb is given by

lntb�Ra� ln

�
b
�

1

g�1

�
(2)

For the Shannon and Simpson index, this straight line
with slope 1 coincides with the simulation data (Fig. 3).
Interestingly, it yields a lower bound for the number of
species S, an argument already used by Torsvik et al.
(1990a).

Discussion

By simulating microbial communities and generating
reassociation curves, we have shown that these curves
encode a range of Rényi diversities. The Simpson diversity
seems to be most easily accessible (for denaturation fractions
b:1). For longer experiments, also accurate estimates of
the Shannon diversity are obtained (at b:0.5), together
with intermediate Rényi diversities Ra for a between 1 and
2. If the experiment can be continued until most of the
DNA is reassociated (corresponding to small b), then
estimation of Rényi diversities Ra with a as small as 0.5
is possible.

Although the reassociation model is highly idealised, it
contains crucial information about the diversity estimation
problem. For pairs (a, b) on the minimal error curve
(Fig. 1), the correlation between Ra and ln tb is almost
perfect. This implies that the reassociation times tb with
b � ]0,1[ can be mapped directly to the Rényi diversities Ra
with a � ]0.5,2[. In other words, Cot curves encode
accurate information about this range of Ra and nothing
else. The problem of estimating other diversity measures
based on reassociation kinetics therefore reduces to the
problem of determining these measures from the given
range of Rényi diversities.

Looking at the estimation of the number of species S, we
have to extrapolate the segment Ra with a � ]0.5,2[ towards
a�0. This extrapolation problem as such implies a
significant loss of precision. Alternatively, one could make
assumptions on the community structure (lognormal SAD,
for example), but as our knowledge about microbial SADs
is very limited, this introduces an important factor of
arbitrariness. On the other hand, we can easily get a lower
bound for the richness S, as the Rényi diversities Ra are
decreasing in a. This seems to be the only reliable
information available about the number of species S.

Adding more complexity to the reassociation model (like
repeated sequences or species-dependent parameters) will
lead to similar conclusions. The estimation of the Simpson
and Shannon diversities can be expected to become less
accurate, and estimating the number of species S will be
even more problematic. One way to handle this situation is
a careful error analysis of the richness estimation (Gans
et al. 2005, Bunge et al. 2006, Volkov et al. 2006). We
believe, on the contrary, that working with appropriate

Fig. 2. Fitting error of Rényi diversities based on reassociation
kinetics. The curves correspond to horizontal sections of Fig. 1 at
b�0.01, b�0.5 and b�0.99. The fitting error for b�0.99
reaches a minimum close to a�2, showing that t0.99 is strongly
correlated with the Simpson diversity. Similarly, the error for b�
0.5 has a minimum close to a�1, and thus contains the Shannon
diversity. The error b�0.01 shows the accuracy of the best
estimate for Rényi diversities with small a, like the logarithmic
richness ln S.

Fig. 3. Correlation between Rényi diversity Ra and reassociation time tb, and its analytical approximation (Eq. 2). (a) reassociation time
ln t0.01 vs logarithmic richness. (b) reassociation time ln t0.5 vs Shannon diversity. (c) reassociation time ln t0.99 vs Simpson diversity.
Equation 2 gives a lower bound in the first case, and an excellent approximation for cases (b) and (c).
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diversity indices might be more helpful. Here we have
shown that, in the case of reassociation kinetics, the data
itself suggests what index is appropriate. The family of
Rényi diversities can be considered as a framework to
translate experimental results in terms of community
structure. Estimating other diversity indicators, such as
species richness, is then only possible at the expense of
estimation precision.

Our analysis shows the remarkable power of Rényi
diversities (or equivalently, Hill numbers) to investigate the
problem at hand. Although these concepts were introduced
in ecology several decades ago, practical applications have
remained scarce. On the other hand, the problems in
estimating microbial diversity are considerable. As standard
techniques (like non-parametric richness estimators, or
estimates based on SAD assumptions), often borrowed
from studies of macro-organisms, seem to be of limited
utility, microbial ecology is calling for fresh approaches.
This contribution demonstrates how Rényi diversities can
help to fill this gap.
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