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Applying ideas of statistical mechanics in ecology have recently received quite some attention. The entropy maximization
(EM) formalism looks particularly attractive, as it provides a simple algorithm to infer detailed system variables from a
limited number of constraints. However, we point out that a blind application of this formalism can easily lead to wrong
conclusions. To illustrate this, we reanalyze an ecological data set that has been used to claim the good performance of
EM in predicting species abundances from trait measurements. We show that these results are entirely due to the
restrictive constraints, and do not provide any support for the applicability of EM in ecology. By comparing with a simple
example from physics, we indicate which characteristic mechanism of EM, and of statistical mechanics in general, is
missing for the ecological example. This analysis introduces a series of methods to evaluate future attempts to apply EM
in ecology.

Ecological modelling typically follows a bottom�up ap-
proach. In community ecology, for example, models are
constructed by specifying the characteristics of different
species, together with their interactions, in order to obtain a
description of the total community. This often leads to
intricate mathematical models due to the large number of
individuals and/or species, and their complicated interac-
tions. Comparable systems in physics, where many micro-
scopic particles interact to yield macroscopic behavior, are
typically modelled based on a top�down approach. Particles
and their interactions are then described only schematically,
as it turns out that a lot of microscopic details are washed
out when passing to the macroscopic level. The approxima-
tion techniques that enable precise macroscopic predictions
are the subject of statistical mechanics.

Can techniques borrowed from statistical mechanics be
of use in ecology? The situation in ecology is much more
delicate as even the distinction between microscopic and
macroscopic levels is not obvious. This stands in sharp
contrast with statistical mechanics, where the separation
between the two levels is huge: Avogadro’s number (:1023

particles mole�1) is an illustrative quantity. Therefore one
should not expect that results from statistical mechanics can
be immediately transferred to ecology. On the other hand,
some aspects of statistical mechanics have already found
wide application outside physics. The entropy maximiza-
tion (EM) method, for example, provides an elegant
formalism to perform statistical mechanical computations
(Jaynes 1957). In this method, the microscopic degrees of
freedom are described by the probability distribution that
maximizes the Shannon entropy subject to a set of

macroscopic constraints. Entropy maximization has re-
ceived the status of a general inference technique, which
is applied to a wide range of problems (e.g. image
reconstruction, Jaynes 2003), and thus it seems to be a
good starting point to exploit statistical mechanics in
ecology.

Entropy maximization has recently been applied to
several issues in community ecology. A number of papers
have used EM to derive species abundance distributions
(SADs) (Banavar and Maritan 2007, Pueyo et al. 2007,
Dewar and Porté 2008). These authors assumed an a priori
SAD, imposed community-level constraints (e.g. the total
number of individuals is fixed), and applied the EM
method to generate the corresponding a posteriori SAD.
This application of EM has been relatively successful since it
allowed common ecological SADs to be recovered. In
particular, the logseries distribution seems to be encoded
most robustly in the formalism (Banavar and Maritan 2007,
Pueyo et al. 2007, Dewar and Porté 2008). By slightly
modifying the constraints or the a priori distribution, Pueyo
et al. (2007) and Banavar and Maritan (2007) showed that
the lognormal distribution and the patterns predicted by
neutral community models can also be generated. These
results suggest that standard SADs have a statistical basis,
and contain only limited ecological information. It supports
the conclusion that predicting a reasonable SAD is only a
weak indication of the fruitfulness of an ecological theory
(McGill et al. 2007).

These applications of the EM method do not assume
differences among species, and thus are in the spirit of
neutral community models. As a consequence, however,
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only abundances of unspecified species can be predicted,
leading to rather weak tests of the usefulness of entropy
maximization. To collect stronger evidence, two recent
studies incorporated differences among species in the EM
formalism, and solved for the abundances of particular
species (Shipley et al. 2006, Dewar and Porté 2008). Dewar
and Porté (2008) assumed that various species had different
resource consumption traits, and applied EM by imposing
the total resource use of the community. They showed that
this again leads to lognormal and neutral-like SADs, and
more interestingly, to a number of diversity�productivity
relationships. The latter result is remarkable as mechanistic
models that predict these types of relationships are often
much more complicated. It suggests that not only SADs,
but also other ecological patterns could have a largely
statistical origin, and could thus be prone to successful
application of the EM method.

Although these theoretical insights are promising, only
empirical data can ultimately provide strong evidence for
entropy maximization in ecology. Dewar and Porté (2008)
analyzed one plant community, showing some agreement
between observed and predicted species abundances. Ship-
ley et al. (2006) studied a more extensive data set, and
claimed that entropy maximization allowed accurate pre-
diction of species abundances based on species traits and
their community-aggregated values. This result has been
questioned (Marks and Muller-Landau 2007, Roxburgh
and Mokany 2007), in particular by pointing out the
circularity in Shipley et al.’s (2006) application of EM since
they first computed constraints based on species abun-
dances, and then predicted species abundances from these
constraints. Here we reanalyze Shipley et al.’s (2006) data,
and argue that a more fundamental problem invalidates
their conclusion, i.e. the basic mechanism underlying any
useful application of entropy maximization does not
operate. To highlight this problem, we compare their
ecological application with a simple system from physics,
which is in form closely related to the problem of predicting
species abundances, but which does exhibit the fundamental
mechanism underlying entropy maximization. We then use
this case study as an example to discuss more generally the
limitations of EM in ecology.

Entropy maximization in physics: a model system

Here we sketch the application of entropy maximization for
a physical system, which will be compared with an
ecological system in the following sections. The EM
method has a long history, dating back to Boltzmann
(end of 19th century), and more elaborate discussions can
be found in textbooks such as Schroeder (2000) and Jaynes
(2003).

Consider a box filled with non-interacting particles.
Every particle occupies one out of S energy levels. The
energy of level i is denoted by ei, and the number
of particles occupying that level by ni, with i�1, . . . , S
(Table 1). Suppose that at a certain time, we measure the
total number of particles present in the box, denoted by N,
and the total energy of these particles, denoted by E.
Because the particles are non-interacting, the total energy E

equals the sum of the energies of the individual particles.
We then have the following relations:

XS

i�1

niei�E

XS

i�1

ni�N

ni � f0; 1; 2; . . .g i�1; . . . ; S

(1)

Let the relative occupation of energy level i be pi�ni/N.
For large N these relative occupations can be regarded as
continuous variables, and the constraints become

XS

i�1

piei�
E

N

XS

i�1

pi�1

pi]0 i�1; . . . ; S

(2)

Obviously, these two equations do not allow us to
reconstruct the vector p�(p1, . . .,pS) (if S�2). Never-
theless, EM provides a method to estimate these numbers.
It stipulates that the Shannon entropy,

H(p)��
XS

i�1

pi ln pi (3)

should be maximized subject to the constraints (Eq. 2). It
can be shown that this rule yields a unique vector of relative
occupations, which we will denote by pmax H.

The rationale behind this application of EM goes as
follows. Any vector n satisfying (Eq. 1) represents a possible
distribution compatible with the measurements. However,
some of these vectors can be realized in many more ways
than others. Indeed, the number of ways N particles can be
distributed over S energy levels to yield the vector of
occupation numbers n�(n1, . . .,nS) is given by the multi-
nomial coefficient

N
n1. . . nS

� �
�

N!

n1!. . . nS!
(4)

As soon as N is large enough, these coefficients take very
unequal values. For example, the multinomial coefficient
for n1:n2: . . .:nS is much larger than the coefficient for
n1�n2, . . .,nS. Therefore, distributing N particles randomly
over S energy levels typically yields a more or less even
distribution of occupation numbers. When constraints are
taken into account, we simply look for the vector n that has
the largest multinomial coefficient consistent with these
constraints. It can be shown that for large N, maximizing
Shannon entropy (with continuous arguments p, which are
easier to manipulate) leads approximately to the same result
as selecting the largest multinomial coefficient.

The nature of the EM method is thus combinatorial.
However, for its application to give meaningful results,
more subtle aspects have to be considered. For example,
when using multinomial coefficients, we implicitly assume
that the different ways a vector of occupation number n can
be realized should be counted with equal weight. This is an

1701



assumption about the underlying system structure that is
often difficult to assess, and that sometimes requires
counter-intuitive hypotheses to give correct predictions.
The choice of the constraints taken into account can also be
particularly important. Obviously, leaving out constraints
that carry crucial information will yield an inaccurate EM
prediction. On the other hand, constraints should be
carefully selected so that EM can be used to its full strength.

It is interesting to already note the parallels with
ecological systems. Replacing ‘particle’ by ‘individual,’ and
‘energy level’ by ‘species,’ the vectors n and p represent
absolute and relative species abundances, respectively. The
Shannon entropy (Eq. 3) is then identical to the well-
known Shannon diversity index. The multinomial coeffi-
cient (Eq. 4) has also been used in ecology, notably as the
Brillouin diversity index (Magurran 2004),

B(n)�
1

N
ln

N
n1. . . nS

� �

Entropy maximization in ecology: looking for
empirical evidence

Although the analogy between energy level occupation
numbers and species abundances looks obvious, justifying
the application of EM is much more involved in ecology
than in physics. The theoretical argument for the applica-
tion of EM, as outlined in the previous section, is based on
the separation between microscopic and macroscopic scales,
and on the highly unequal values the multinomial coeffi-
cient (Eq. 4) can take. Whether the number of components
in ecological systems is sufficient to apply the statistical
methods of large-number systems remains unclear. Ecosys-
tems have been characterized as medium-number systems
for which both the approaches of mechanistic and statistical
modelling are problematic: there are too many components
to describe each of them explicitely, and there are not
enough components to work with averaged properties
(O’Neill et al. 1986).

As theory is lacking, empirical studies should settle the
question whether the EM method is useful to predict
species abundances. But the corresponding data analysis is

subtle, as the EM algorithm requires a good deal of
a priori information (microscopic system structure and
macroscopic constraints, see previous section). Therefore it
does not suffice to evaluate the prediction performance as
such, but one should also exclude the possibility that good
prediction results are simply due to the a priori information
rather than to EM as such. Failing to do so can lead to
wrong conclusions, as we illustrate now with an ecological
data set.

Shipley et al. (2006) presented an application of the EM
method to plant ecology. In a series of vineyards in the
south of France, the relative abundances of 30 plant species
were measured (/pobs

i for species i, vector pobs; experimental
methods are described in Garnier et al. 2004). Eight plant
traits (such as plant height, leaf thickness, perennial versus
annual) were measured for each species (tij for trait j of
species i; experimental methods are described in Vile et al.
2006). So-called community-aggregated values tj were then
computed, which average species trait values weighted by
observed species abundances,

t̄j�
X

i

pobs
i tij

This yields a number of constraints that predicted species
relative abundances (pi for species i, vector p) must meet:

XS

i�1

pitij� t̄j
j�1; . . .;T

XS

i�1

pi�1

pi]0 i�1; . . .; S (5)

There are S�30 variables to be determined, for which
T�1�9 equality constraints are imposed. The remaining
S�T�1�21 degrees of freedom are fixed by maximizing
the Shannon entropy (Eq. 3). This procedure was repeated
for 12 data sets, corresponding to 12 vineyards that were
abandoned over a period ranging from 2 to 42 years. The
return to natural vegetation implied a significant decrease in
species diversity: the younger plots contained from 8 to 16
of the 30 species, whereas the older ones only had 4 or
6 species. Note that at most half of the 30 species were
observed on any site. In fact, for 256 out of the 12�30�
360 observed abundances, pobs

i �0:

Table 1. Explanation of mathematical symbols.

Symbol Explanation

S Number of species in community
N Number of individuals in community
nI, n Abundance of species i, abundance vector n�(n1, n2, . . .,nS), thus N�Si ni

pi, p Relative abundance of species i, relative abundance vector p�(p1, p2, . . .,pS), thus pi�
ni

N

pi
obs, pobs Observed relative abundance

T Number of traits measured in community
tij Value of trait j for species i

/t̄j Community-aggregated trait, i.e. mean value for trait j in community, tj�aip
obs
i tij

H, C, D Functions on relative abundance vectors: Shannon entropy, Simpson concentration, and distance to observed
abundance vector pobs, resp.

F Set of relative abundance vectors p that satisfy all the constraints, i.e. the feasible set
pmax H, pavg F Predicted relative abundance vector, by maximizing Shannon entropy H or by averaging over the feasible set F, resp.
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Formally, Shipley et al.’s (2006) approach has the
features of the EM method: an indeterminacy is lifted by
maximizing the Shannon entropy of a probability distribu-
tion. Due to the concavity of Shannon entropy, the unique
maximum can be found by standard numerical techniques
(Appendix 1). We used the constrained nonlinear optimiza-
tion algorithm fmincon in Matlab.

Figure 1 compares the observed and predicted species
abundances for the 12 sites. The left panel is essentially a
reproduction of Fig. 2 from Shipley et al. (2006). The
Pearson correlation coefficient r�0.97 is identical to the
value reported in Shipley et al. (2006). Note, however, that
this coefficient measures how well the data are approxi-
mated by the best linear fit, shown in Fig. 1 as a dashed line.
Here we are interested instead in the prediction error of the
EM solution. This can be quantified by the root mean
squared (RMS) error of the predicted species abundance
pmax H

i with respect to the observed species abundance pobs
i ;

e�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

S

XS

i�1

(pmax H
i �pobs

i )2

vuut

For our data set, the RMS prediction error is e�0.03.
But the left panel of Fig. 1 shows clearly that most of the

data points are concentrated in the bottom left corner, i.e.
there are too many species with low abundances pobs

i ; which
precludes the use of a linear fit and makes it impossible to
assess how well the prediction performs for rare species. To
zoom in on the region of small abundances, we applied a
fifth root transformation to both observed and predicted
data. This transformation is more convenient than a
logarithmic transformation to handle the numerous zeroes
in the observed data (256 out of 360). We also checked that
other root transformations led to the same conclusions. The
correlation coefficient for the transformed data, shown in
the right panel of Fig. 1, is now r�0.71, and the RMS
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Figure 2. Rank�abundance curves, together with smallest and largest species abundance consistent with the constraints. Only 8 of 12
plots are shown, because for the other plots, the feasible set F consists of a single point. The dots give the rank-abundance curve of the
observed abundance vector pobs. The vertical lines through the dots connect pmin

i and pmax
i for the corresponding species in the

corresponding community. The lower the diversity of the community, the smaller the feasible set F.
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Figure 1. Predicted vs observed relative abundances for 12 plant communities with 30 species each. Observed abundances on x-axis,
predicted abundances on y-axis. The prediction is obtained by maximizing the Shannon entropy conditional on community-aggregated
trait values. Left: untransformed data, with correlation coefficient r�0.97 and RMS prediction error e�0.03. Right: fifth root
transformed data, with correlation coefficient r�0.71 and RMS prediction error e�0.22. Full line: first bisector, corresponding to a
perfect prediction. Dashed line: linear fit as used in the computation of the correlation coefficient.
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error of predicted vs observed species abundance after fifth
root transformation,

e�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

S

XS

i�1

((pmax H
i )0:2�(pobs

i )0:2)2

vuut

is e�0.22.
The plot reveals that only the abundances of the

commonest species are accurately estimated, a point that
was also made by Marks and Muller-Landau (2007) after
applying a logarithmic transformation to the data. Predic-
tions become imprecise for species with pobs

i B0:1: It is also
interesting to note that on average species abundances are
underestimated for common species and overestimated for
rare species. This is already visible in the linear fit for the
untransformed data (Fig. 1, left), and is obvious in the
linear fit for the fifth root transformed data (Fig. 1, right).
This indicates that maximizing the Shannon entropy
(Eq. 3) is too strong a condition to fill in the remaining
degrees of freedom after imposing the constraints (Eq. 5).

Entropy maximization in ecology: overly restrictive
constraints

Although closer scrutiny shows that the predictive power of
the EM formalism in the above example is much less
impressive than claimed by Shipley et al. (2006), even good
predictions would not be enough to prove the usefulness of
the EM method in ecology. In particular, imposing such
restrictive constraints that only vectors close to the
experimentally observed one are possible, will lead to
excellent results by any optimization method. In this case,
EM would have no contribution at all in the good
prediction performance.

It is not difficult to see that the latter problem could be
an issue in the above ecological data set. Indeed, there is an
alarming circularity in first computing t̄

j
from pobs, and

next imposing that average trait values should equal t̄
j

for
all communities p. These conditions could very well select
for vectors p close to pobs. Our observation that only the
commonest species are well predicted already suggests that
the good fit between observed and predicted data might be
simply due to the major influence common species have in
the average trait values t̄

j: This potential problem of
circularity was also raised by Marks and Muller-Landau
(2007) and Roxburgh and Mokany (2007).

To go further and understand the role played by the
macroscopic constraints, we performed a detailed study of
the set of abundance vectors compatible with community-
aggregated traits. We call a vector p feasible if it satisfies all
the constraints (Eq. 5). We call the set of all feasible points
the feasible set, and denote it by F,

F�
�

pjX
i

pitij� t̄j for all j;

X
i

pi�1; pi]0 for all i

	

This set, defined by a number of linear equalities and
inequalities, is a so-called polyhedron, and therefore is
convex (Appendix 1). Because its elements are abundance

vectors p, it is a subset of the simplex with dimensionality
S�30, and hence is bounded. Moreover, as the inequalities
are not strict, it is also closed. Note that the feasible set is
not empty because pobs � F:

The relatively good correlation in Fig. 1 might be
explained by a small set F, so that any vector p �F is
necessarily close to pobs �F. To get a rough idea of the
extension of F, we proceeded as follows. For every species i,
we looked at the smallest and largest abundance pobs

i

compatible with p �F. In other words, we solved optimiza-
tion problems of the form

pmin
i �min fpi j p � Fg

pmax
i �max fpi j p � Fg (6)

Optimizing a linear function over a bounded, closed,
convex set can be efficiently done by the simplex method.
We used the Matlab implementation linprog.

Surprisingly, the feasible set F was found to consist of a
single point for 4 of the 12 plots, i.e. F�{pobs}. These plots
(numbers 8, 9, 10 and 12) are all old and species poor. As a
consequence, all possible methods to select a vector in the
feasible set will yield pobs. Figure 2 shows the extension of
the feasible set F for the other 8 plots. It plots rank-
abundance curves (dots), together with extremal species
abundances pmin

i and pmax
i (vertical lines). We noted already

that older plots are less diverse. Now we see that older plots
also have a smaller feasible set F, and thus more restrictive
constraints.

The latter observation can be understood as follows.
Communities that are dominated by a few species have
community-aggregated traits t̄

j
close to the traits tij of the

dominant species. Therefore, any other feasible community,
i.e. any community with the same aggregated traits t̄

j;
will necessarily contain the same common species.
Similarly, species that are rare in the observed community
can only have small abundances in other feasible commu-
nities, otherwise the aggregated traits would shift towards
their own traits. Therefore less diverse communities impose
more restrictive constraints on the feasible set F. This
explains the small extensions of the feasible set in plot 11
and the singleton feasible sets in plots 8, 9, 10 and 12.

On the other hand, abundances pi consistent with the
constraints still vary widely in diverse plots, e.g. plot 2.
Note, however, that these graphical representations give an
overestimation of the extent of the set F, as the extrema pmin

i

and pmax
i cannot be attained simultaneously for several

species. To further zoom in on F, we take random samples
from the convex set F with a uniform distribution. The
algorithm used to do so is described in Appendix 1. For
every sample, the root mean squared (RMS) distance D to
the observed abundance vector pobs is computed,

D(p)�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

S

XS

i�1

(pi�pobs
i )2

vuut (7)

The distribution of this distance in the feasible set F
provides an idea of the geometry of F with respect to pobs.

Figure 3 shows the frequency distribution of D for the 8
plots that have a non-trivial feasible set. These distributions
are wider in more diverse communities. A vertical line
indicates the EM solution. Clearly the EM solution pmax H

does not hold a special status among the feasible abundance
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vectors p. The value D(pmax H) seems to be picked rather
randomly from the distance distribution. This sheds quite a
different light on the excellent correlation in Fig. 1, which
now appears to be entirely due to the restrictive constraints,
not to EM.

Shipley et al. (2006) justified the application of the EM
method to this problem by an argument borrowed from
statistical mechanics. They assumed that, to a first approx-
imation, resources are attributed independently to different
species. Interestingly, we can compare their EM solution
with another prediction that does not rely on this
hypothesized microscopic structure. Indeed, if only trait
constraints are taken into account, the species abundance
vector most indicated by the data is simply the center of the
feasible set F. This center vector, denoted by pavgF, can be
obtained by averaging abundance vectors, uniformly
sampled from the feasible set F. Table 2 compares the
performance of the estimated abundance vectors pmax H and
pavg F. The distance D(pmax H) is not significantly smaller
than D(pavg F). Therefore, this data set does not provide
evidence for any usefulness of EM in the present problem.

The performance of other estimates of the vector pobs is
also shown in Table 2. Instead of maximizing the Shannon
entropy H we computed the abundance vector that
minimizes the entropy (Marks and Muller-Landau 2007).
We also minimized and maximized Simpson concent-
ration C,

C(p)�
XS

i�1

p2
i (8)

and, as worst-case scenario, maximized the distance D to
the observed abundance vector pobs (Table 1). Whereas
Shannon entropy H is concave, both Simpson concentra-
tion C and the distance function D are convex. Globally
maximizing H or minimizing C reduces to a local
optimization problem, performed in Matlab with the
algorithm fmincon. On the other hand, minimizing H,
maximizing C or maximizing D requires the knowledge of

the extreme points of F (Appendix 1). To compute them,
we exploited a link between ecological trait constraints and
(metabolic) reaction network equilibria (Appendix 1). The
intricate structure of the feasible set F (excluding the 4 plots
with F�{pobs}) is illustrated by the thousands of extreme
points, with a maximum of 23044 points for plot 5.

The estimate pavg F is on average the best predictor,
followed by pmax H and pmin C. Note that these optimization
problems generally possess solutions in the interior of the set
F, whereas the other three (min H, max C and max D) attain
their optimum in an extreme point, which on average lies
further from the observed abundance vector pobs. This
explains the poorer performance of the latter three estimates.

In short, we presented evidence that the EM solution has
no special properties to estimate the vector pobs in the given
context. Any vector arbitrarily picked from the feasible set F
has comparable predictive power. This shows that the
correlation as presented in Fig. 1 cannot be attributed to
entropy maximization, but is entirely due to the constraints.
Indeed, they are so restrictive that all feasible vectors p are
contained in a small set around the sought vector pobs.

Entropy maximization in physics: sharply peaked
distribution

We now return to the example from physics introduced
earlier. Analyzing this system in the same way as the
vineyard data set reveals a mechanism that is absent from
the ecological system. We claim that this mechanism is
characteristic of EM in statistical mechanics, and should be
exhibited by any successful application of EM in ecology.

We used the following parameters. We took S�30
energy levels, i.e. a number equal to the number of species
in the plant plots. The energy levels were chosen as ei�i,
for i�1, . . . , 30, thus corresponding to an equally spaced
spectrum. However, the results below do not depend on
this choice. The measurable quantities are the number of
particles N and the total energy E, which we assumed to be
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Figure 3. Distribution of the distance to the observed abundance vector for uniform samples in the feasible set. Eight of 12 plots were
considered, because for the other plots, the set F consists of a single point. The histograms were constructed from 104 passages of a
random walk on F, see Appendix 1 for details. The vertical line corresponds to the maximum entropy solution pmax H. This abundance
vector is not significantly closer to pobs than any other guess in the feasible set F.
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N�1000 and E�4000. The average energy per particle in
the system was therefore E/N�4, comparable to a
community-aggregated trait value.

The EM problem (Eq. 2) has S�30 variables (the
relative abundance vector), one normalization constraint
(the sum of the relative abundances equals one), and one
trait constraint (the average energy per particle). The
solution pmax H can be computed analytically (Schroeder
2000),

pmax H
i �

e�beiP
j e�bej

(9)

where b is a Lagrange mulitplier that has to be determined
from the condition

X
i

pmax H
i ei�

E

N

For our parameter values, b�0.2872.
The left panel of Fig. 4 shows the rank�abundance curve

of this abundance vector, as well as the smallest and largest
species abundances consistent with the constraints. These
were computed using the optimization problems (Eq. 6).
The extension of the feasible set turns out to be larger than

for the ecological data sets, which is not surprising as there
are fewer constraints in this case.

Next, we randomly sampled abundance vectors n. It is
important to note that there are two distinct ways to achieve
this:

1. A first procedure consists in randomly generating
particle configurations that satisfy the constraints. We
attributed any of the N particles to one of the S energy
levels, such that the total energy equals E. We thus
sampled from the probability distribution where
energy levels are a priori occupied with equal
probability under the total energy constraint. An
efficient algorithm to sample particle configurations
from this distribution is outlined in Appendix 1.

2. A second procedure consists in uniformly sampling
from the feasible set F, as already used in the previous
section and described in Appendix 1.

Note that the link between these two sampling procedures
is given by the multinomial coefficient (Eq. 4). Consider
two abundance vectors m and n satisfying the constraints
(Eq. 1), and assume that

N
m1. . . mS

� �
�

N
n1. . . nS

� �

Then, in the first sampling procedure, configurations
corresponding to m are expected to be sampled more
frequently than configurations corresponding to n. In the
second sampling procedure, both feasible vectors m and n
are equally likely to be sampled.

If we assume that all constraints have been taken into
account, observing the particle configuration of the physical
system at a certain instant corresponds to the first sampling
procedure (Schroeder 2000, Banavar and Maritan 2007).
Curiously enough, this is only true for physical systems
described by classical mechanics. Quantum mechanics
corresponds to the second sampling procedure. Thus, this
procedure replaces the simulation of the abundance vector
of the physical system. We generated 100 such abundance
vectors psim, and computed the distance D(pmax H) to the
maximum entropy solution pmax H,
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rms error
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Figure 4. Structure of the feasible set for the example from
physics. Left: Rank�abundance curve, together with margins for
the abundances compatible with the constraints. Compared with
the ecological data sets (Fig. 2), the feasible set is now more
extended. Right: distribution of the distance to a simulated
abundance vector psim for uniform samples in the feasible set.
The vertical line corresponds to the maximum entropy solution
pmax H. Compared with the ecological data sets (Fig. 3), the
performance of the maximum entropy estimate is now much
better.

Table 2. RMS errors for different criteria to select an abundance vector p. Only the 8 plots with non-trivial feasible set F were considered. The
last row gives the RMS errors for our example from physics. The first two columns (maximizing H and minimizing C) correspond to
optimization problems with a solution in the interior of F; the next three columns (minimizing H, maximizing C and maximizing D)
correspond to optimization problems with an extreme point of F as solution; the last column is based on the estimated center of the set F.

max H min C min H max C max D avg F

Plot 1 0.024 0.035 0.032 0.024 0.056 0.016
Plot 2 0.061 0.066 0.101 0.101 0.107 0.068
Plot 3 0.028 0.036 0.089 0.089 0.091 0.030
Plot 4 0.028 0.038 0.075 0.076 0.080 0.037
Plot 5 0.064 0.087 0.032 0.030 0.100 0.033
Plot 6 0.028 0.031 0.024 0.024 0.055 0.025
Plot 7 0.021 0.022 0.010 0.012 0.047 0.010
Plot 11 0.004 0.005 0.005 0.005 0.005 0.003
Physics 0.004 0.018 0.176 0.176 0.176 0.068
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D(p)�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

S

XS

i�1

(pi�psim
i )2

vuut (10)

The mean distance was found to be 0.005. In fact, this

distance can be estimated analytically: it scales as 1=
ffiffiffiffi
N

p

for large N (Schroeder 2000). Thus, in a larger system of
105 instead of 1000 particles, one would obtain a mean
distance D(pmax H) equal to 5 10�4. Considering that
physical systems are typically composed of a number of
particles N of the order of the number of Avogadro (i.e.
N:1023), one understands easily that the overwhelming
majority of vectors p generated by randomly allocating
particles to energy levels while satisfying the system
constraints are extremely close to the maximum entropy
vector pmax H.

The right panel of Fig. 4 shows a histogram comparable
to those of Fig. 3. It was generated by first, simulating a
single abundance vector psim, i.e. the first sampling
procedure; next, uniformly sampling 104 vectors from the
feasible set, i.e. the second sampling procedure; and finally,
computing the distance (Eq. 10) of these sampled vectors to
psim. The distance D(pmax H) to the vector maximizing
entropy is also shown. We see that the two procedures
to select abundance vectors lead to completely different
results. Whereas the vector pmax H is very close to the first
set of simulated vectors (mean distance 0.005), it is rather
remote from the second set of sampled vectors (mean
distance 0.1). This demonstrates the crucial importance of
using the appropriate method to weight particle configura-
tions.

This result is in sharp contrast with the histogram shown
in Fig. 3, and further illustrated in the last line of Table 2.
Whereas previously the vector pmax H was hardly distin-
guishable from any other feasible vector, here it clearly
stands out from all other estimates of the vector psim. Its
superior predictive performance would only increase by
considering larger systems. Thus, EM is not just an
algorithm to select an arbitrary vector from the feasible
set, where we could as well use the minimal concentration
vector pmin C, or the central vector pavg F. Quite the
contrary, it stipulates to select a vector from the very small
domain in the feasible set where almost all communities
that are randomly generated following the appropriate
procedure and taking the appropriate constraints into
account, are massively accumulated.

Discussion

Entropy maximization is an elegant mathematical techni-
que, capable of reproducing a good deal of statistical
mechanical theory. Application of this formalism to
ecological problems is promising, as suggested by the
fact that common SADs can be recovered rather easily
(Banavar and Maritan 2007, Pueyo et al. 2007, Dewar
and Porté 2008). In this paper, we investigated whether
the EM method can be used to infer practical ecological
information. In particular, we tried to predict the relative
abundance vector from empirical community data. We

showed that successful application of EM requires that
(1) the constraints contain all the significant character-
istics of the community, but, on the other hand, (2) they
be not so comprehensive that only the sought relative
abundance vector is compatible with the data. We have
shown that the results presented in Shipley et al. (2006)
are entirely due to the latter scenario, and therefore do
not provide any evidence for the usefulness of EM in
ecology.

Marks and Muller-Landau (2007) and Roxburgh and
Mokany (2007) already pointed to the circularity in Shipley
et al.’s (2006) analysis. The fact that community-aggregated
trait values are computed from the observed species
abundances before entropy maximization is applied to
estimate the very same species abundances, is indeed
problematic. But any EM analysis is circular to some extent
since the constraints should contain sufficient information
about the unknown distribution for the EM inference to
work. Therefore the fact that constraints and solution are
not measured independently when testing EM predictions
may not be a critical issue. The ecological application of
EM by Shipley et al. (2006) faces a much more funda-
mental problem. The statistical mechanism that justifies
EM is not at work in their data, as our comparison with the
physical model system demonstrates. Note that this
problem would remain even if community-aggregated traits
could be measured directly.

Entrophy maximization has a statistical basis as it selects
the most probable feasible vector (here, the vector of species
abundances). This vector yields precise predictions only if
the distribution of feasible vectors is sufficiently concen-
trated around the most probable one. In turn, this
concentration of feasible vectors requires that the system
be composed of a sufficiently large number of components.
This condition is clearly satisfied for the large-number
systems typical of statistical mechanics. In ecology, however,
one often has to deal with ‘medium-number systems’
(O’Neill et al. 1986). The usefulness of statistical techni-
ques like EM is then a delicate issue, which depends on the
scales involved in the problem. A clear separation is needed
between the microscopic scale (the scale at which the system
components are described) and the macroscopic scale (the
scale at which the ecological question is formulated).
Finding the appropriate scale of system description and
problem formulation is an important challenge in ecological
modelling.

To illustrate this, consider again the problem of
determining species abundances. If one is looking for
SADs of unspecified species, the microscopic structure
is encoded in the a priori distribution, whereas the
constraints fix the macroscopic scale. However, this scale
separation is fuzzier than that encountered in statistical
mechanics, leading to sometimes subtle arguments, as both
scales influence the resulting SAD (Banavar and Maritan
2007, Pueyo et al. 2007, Dewar and Porté 2008). When
predicting the relative abundances of particular species, we
ask for a more detailed macroscopic description, and
consequently we reduce the separation between microscopic
and macroscopic scales even more. We think that in this
case purely theoretical arguments are dubious. Only
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experimental tests can then tell whether statistical techni-
ques such as EM are useful. The merit of Shipley et al.
(2006) is to have posed the question. Although we have
shown that their conclusions are wrong, we agree with them
that this question can only be settled through empirical
evidence. Indeed, entropy maximization is not an algorithm
that can be applied blindly, but it requires a careful analysis
of how microscopic and macroscopic degrees of freedom are
best taken into account.

As another illustration, we develop the example of
metabolic reaction networks in Appendix 1. In this case,
the problem of finding the reaction fluxes has formally the
appropriate structure for applying the EM method: we are
looking for the flux distribution in the reaction network
given a number of stoichiometric constraints. The network
fluxes are natural microscopic degrees of freedom, whereas
stoichiometry imposes hard constraints (expressing mass
conservation) on the macroscopic level, thus contrasting
with the arbitrary trait constraints in Shipley et al. (2006).
Nevertheless, application of EM does not yield the correct
result, as experimental data show that growth under
available resources, not entropy, is maximized at equili-
brium (Ibarra et al. 2002). This negative result, however,
points to the versatility of entropy maximization. Indeed,
the fact that the bacterium was maximizing its growth
constitutes genuine information that was not included
in the statistical algorithm of entropy maximization. But
this informative conclusion can only be drawn provided
that the microscopic and macroscopic structure of the
problem is appropriately taken into account. For example,
if arbitrary trait constraints were used, one could not
determine whether the failure of EM was due to a genuine
mechanism, or whether additional constraints had to be
considered.

By construction, entropy maximization is potentially
useful in ecology because it merely formalizes the most
probable behavior of the system constituents under a set of
constraints. Its application, however, requires that both
system constituents and macroscopic constraints be appro-
priately formulated. In this paper, we introduced a set of
tools to detect overly restrictive constraints, and used these
tools to analyze the EM prediction of species abundances in
a community. But additional tools are needed to apply the
EM algorithm to realistic ecological problems. For example,
the plant communities we considered were sampled almost
exhaustively. Trait measurements were also assumed to be
error-free. Techniques have been developed in other EM
applications to deal with sampling issues and noisy data
(Jaynes 2003), and should be adapted to an ecological
context. Our analysis was also restricted to a community at
one location and one time, thus neglecting spatial and
temporal correlations. Although linking community and
average trait dynamics was one of the main motivations of
Shipley et al. (2006), they did not really address this issue
directly. A rigorous analysis of the application of entropy
maximization to dynamically evolving communities would
be particularly useful. Such an analysis could clarify the
status of previous attempts to apply non-equilibrium
versions of entropy maximization in ecology (Fath et al.
2001, Martyushev and Seleznev 2006), which currently lack
a strong theoretical basis.
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Appendix 1. Some technicalities

Convex analysis
We recall a number of definitions from convex analysis, see
e.g. Boyd and Vandenberghe (2004). A set C in Rd is
convex if the line segment between any two points in C lies
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again in C. For a convex set C, a point x �C is called an
extreme point if it is not an interior point of any line
segment in C. Intuitively, an extreme point is a corner of C.

A polyhedron is defined as the set of solutions of a finite
number of linear equalities and inequalities. A polyhedron
is thus the intersection of a finite number of halfspaces and
hyperplanes. Polyhedra are convex sets, and have a finite
number of extreme points. A bounded and closed poly-
hedron C with extreme points vk, k�1, . . . , M, can be
represented as

C�
�XM

k�1

lkvk ½ lk ]0; k�1; . . . ;M;
XM

k�1

lk �1

	

(11)

However, finding the extreme points vk of a polyhedron C
in a high-dimensional space Rd can be computationally
difficult, see below.

A function F: Rd0R defined on a convex set C is
convex if for all x, y �C, and for all l with 05l51, we
have

F(lx�(1�l)y)5F(x)�(1�l)F(y) (12)

A function F is strictly convex if strict inequality holds,
whenever x"y and 0BlB1. We say F is concave if �F is
convex, and strictly concave if �F is strictly convex. For an
affine function we always have equality in Eq. 12, so all
affine (and therefore also linear) functions are both convex
and concave.

Consider a bounded, closed, convex set C in Rd, and an
optimization problem over C, e.g. minimizing F(x) subject
to x �C. We say y is a (global) minimum if y �C and

F(y)�minfF(x)½x � Cg

We say y is a local minimum if y �C and there exists an
e�0 such that

F(y)�minfF(x)½x � C;Ix�yI5eg

Global and local maximum are defined analogously.
When minimizing a convex function F over a bounded,

closed, convex set C, any local minimum is also a global
minimum. If the function F is strictly convex, this global
minimum is unique. Similar statements hold for maximiz-
ing a concave function.

When minimizing a strictly concave function F over a
bounded, closed, convex set C, any local minimum is an
extreme point of C. The global minima can be found be
comparing the value the function F takes in the extreme
points of C. Similar statements hold for maximizing a
convex function.

Analogy with metabolic networks
Consider a set of S metabolic reactions using T reagentia,
the metabolites. The concentration of metabolite j is
denoted by Xj. The flux of reaction i, i.e. the number of
times the reaction proceeds per unit of time, is denoted by
pi. The stoichiometric coefficient t̃ij gives the quantity of
metabolite j produced (if ) t̃ij�0 or consumed (if t̃ijB0)
when reaction i happens once.

The dynamics of metabolite j are then given by

dXj

dt
�

XS

i�1

pit̃ij

The steady-state condition is given by

XS

i�1

pit̃ij�0

All the reactions are assumed to be irreversible, and
therefore pi]0. Multiplying the reaction fluxes pi by a
factor corresponds to rescaling time. We can therefore,
without loss of generality, impose that Si pi�1. This leads
to the set of conditions

XS

i�1

pit̃ij
�0 j�1; . . . ;T

XS

i�1

pi�1

pi]0 i�1; . . . ; S (13)

They are equivalent with the conditions (Eq. 5), as can be
seen by identifying t̃ij� tij� t̄

j:
As a result, methods developed to analyze metabolic

networks can be used to analyze ecological trait constraints.
For example, an algorithm for the computation of the
extreme points of the feasible set F is implemented in the
program METATOOL (Pfeiffer et al. 1999). This allows us
to construct the representation (Eq. 11) for the feasible set,
which can be used to solve a number of optimization
problems (minimizing a concave function, or maximizing a
convex function).

Finding the function F to be optimized in order to
reproduce observed reaction fluxes pi

obs is a central research
question in metabolic network analysis. For the recon-
structed metabolic network of Escherichia coli, reaction flux
vectors were computed that maximize growth subject to the
availability of external metabolites (Ibarra et al. 2002). In an
experiment the bacterium was seen to undergo adaptive
evolution to achieve the predicted growth (Ibarra et al.
2002).

Uniform sampling from convex set
Sampling from a convex set C in a high-dimensional space
Rd is a common computational task. We want to generate
an (approximately) uniformly distributed random point.
The generic method to do this is to define a random walk
on C with a uniform stationary distribution, and to follow
this random walk for a sufficiently large number of steps.
The point obtained this way will be approximately
stationary and thus approximately uniform.

We used the so-called hit-and-run random walk (Smith
1984), defined as follows. If the current point is x, we
generate the next by selecting a random line through x
(uniformly over all directions), and choosing the next point
uniformly from the segment of the line in C. Compared to
other random walks, this algorithm appears to need a small
number of steps to reach stationarity (Lovász 1998).

Our implementation starts the hit-and-run random walk
from the abundance vector pmax H, i.e. the feasible point
with maximum entropy H. We take 104 steps to overcome
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the transient, and another 106 steps in the (approximately)
stationary distribution. Points are recorded every 100 steps,
which yields 104 points from which the histograms in Fig. 3
were computed. We checked that the same distributions
were obtained for other realizations, or by starting from
other initial points.

Sampling particle configurations
We describe a method to randomly distribute N particles
over S energy levels (level i has energy ei) with given total
energy E. We sample N times from the set {1, 2, . . .,S} with
probability distribution

e�be1P
i e�bei

;
e�be2P

i e�bei

; . . . ;
e�beSP

i e�bei

Denote the results by the vector i�(i1,i2, . . .,iN). The
probability for a configuration i is

P(i)�
e�bE�P
i e�bei

�N

with E(i) the total energy of the configuration i,

P(E)�
X

i½
P

k
eik

�E

P(i)�#

�
ijXk

eik
�E

	
e�bE�P
i e�bei

�N

The conditional probability on the total energy E is

P(i½E)�
P(i)

P(E)
�

1

#

�
ijPk eik

� E

	

and thus all vectors i are equally weighted. Therefore, by
keeping only those vectors i that satisfy the energy
constraint E(i)�E, we obtain a sampling procedure to
distribute particles with given total energy. Note that we are
still free to choose the parameter b. To maximize our
chances that the sampled vector i will have the required
energy E, we impose

E(E(i))�N

P
i eie

�beiP
i e�bei

�E

For the parameter values S�30, N�1000, E�4000 and
ei�i, we have b�0.2872. Interestingly, this closely
resembles the maximum entropy solution (Eq. 9). We
stress, however, that this sampling algorithm is nothing but
a mathematical trick, and does not depend in any way on
the entropy maximization method.
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