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Abstract Hubbell’s neutral theory claims that ecological patterns such as species abun-
dance distributions can be explained by a stochastic model based on simple assumptions.
One of these assumptions, the point mutation assumption, states that every individual has
the same probability to speciate. Etienne et al. have argued that other assumptions on the
speciation process could be more realistic, for example, that every species has the same
probability to speciate (Etienne, et al. in Oikos 116:241–258, 2007). They introduced a
number of neutral community models with a different speciation process, and conjectured
formulas for their stationary species abundance distribution. Here we study a generalised
neutral community model, encompassing these modified models, and derive its stationary
distribution, thus proving the conjectured formulas.

Keywords Biodiversity · Ewens sampling formula · Metacommunity · Neutral model ·
Speciation · Species abundance distribution

1. Introduction

Since their introduction a few years ago (Hubbell, 2001; Bell, 2001), neutral community
models have gained much interest in community ecology. These models aim to explain
commonly observed macro-ecological patterns, such as species abundance distributions
and species area relationships, by simple stochastic rules and the assumption of functional
equivalence between conspecific as well as heterospecific individuals (see, e.g., Etienne,
2005; Rosindell and Cornell, 2007). Hubbell’s model describes the endless repetition of
randomly assigning an individual to die, and immediately replacing it by another individ-
ual. One distinguishes two spatial scales. On the large scale, the so-called metacommunity,
the replacing individual originates either by birth or by speciation (i.e., birth of a mutant).
On a smaller scale, the so-called local community, the replacing individual originates by
birth or by immigration from the metacommunity. This results in community composition
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dynamics governed by species extinction and immigration in the local community, and by
extinction and speciation in the metacommunity.

Here we focus on the stationary species abundance distribution predicted by the neutral
metacommunity model, and in particular how it is affected by the speciation process. In
Hubbell’s model there is a fixed probability ν that a death event is followed by a speciation
event; the probability that a death event is followed by a birth event is then 1 − ν. This
means that all individuals have the same probability to speciate. However, this assumption
has been scrutinised by Etienne et al. (2007), because speciation theorists usually assume
that rather all species have the same probability to speciate (Stanley, 1975; Etienne and
Apol, 2009), which is supported by, albeit scarce, data (Makarieva and Gorshkov, 2004).

Etienne et al. (2007) showed that alternative assumptions on the speciation process
can be incorporated in neutral metacommunity models, without drastically modifying the
mathematical framework. They proposed a stochastic model, where repeatedly a pair of
individuals are sampled from the metacommunity. As in Hubbell’s model, the first indi-
vidual dies, and the second individual reproduces leaving either a conspecific individual
or a new species (due to mutation). However, the abundance � of the species the sec-
ond individual belongs to, is used to determine the probability ν(�) of a speciation event.
Taking ν(�) independent of � (ν(�) = ν1), as in Hubbell’s model, can be considered as
speciation with a rate proportional to the number of individuals in the community, i.e.,
every individual has the same probability to speciate. Taking ν(�) inversely proportional
to � (ν(�) = ν0

�
) corresponds to a speciation rate proportional to the number of species in

the metacommunity, i.e., every species has the same probability to speciate.
In this paper we investigate the neutral metacommunity model with a general function

ν(�). We first describe the model as a continuous-time Markov process, so that the cor-
responding mathematical theory can be applied, guaranteeing existence and uniqueness
of the stationary species abundance distribution. Next, we try to compute this stationary
distribution, by imposing the so-called detailed balance conditions. They can be satisfied
for a restricted class of functions ν(�), including the two special cases mentioned above:
ν constant and ν(�) ∝ 1

�
. In the former case, the stationary distribution is given by Ewens’

sampling formula (Ewens, 1972). In the latter case, we retrieve the formula given in Eti-
enne et al. (2007). Etienne et al. (2007) only showed that this latter formula is correct for
small community size, and that it produces the correct mean values for any community
size. We provide a formal proof of this formula for any community size.

2. Markov process for species abundances

In neutral metacommunity models, species are constantly originating and disappearing
through speciation and extinction. If we take two snapshots, separated by a sufficient
amount of time, the snapshots will have no species in common. A stationary state is there-
fore only biologically meaningful when we neglect species identity. Rather than specify-
ing the abundance of every species, it suffices to specify the number of species Sk with
abundance k. We assume here that the metacommunity size, which we denote by JM, is
constant over time. Then we can collect these numbers in a vector �S of size JM,

�S = (S1, S2, . . . , SJM) with
JM∑

k=1

kSk = JM. (1)
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The metacommunity models we consider, for which the state at time t is given by a
vector �S, are Markov processes. This means that the probability to go from the state �S1 at
the present time t1 to a state �S2 at a future time t2, does not depend on states in the past (i.e.
before t1). For mathematical convenience we choose a continuous-time description, but
the discrete-time description is very similar. We denote the transition rate from �S1 to �S2

by R(�S1, �S2). Given some initial probability distribution P (0, �S), the dynamics determine
the probability distribution P (t, �S) of the system being in state �S at time t . They are
described by the so-called master equation (Van Kampen, 1992),

d

dt
P

(
t, �S1

) =
∑

�S2 �=�S1

(
P

(
t, �S2

)
R

(�S2, �S1

) − P
(
t, �S1

)
R

(�S1, �S2

))
. (2)

The master equation is nothing but a continuity equation for probabilities. It states that
the probability of state �S1 can only increase by having a transition from any other state �S2

to �S1 (first term in the right-hand side), and can only decrease by having a transition from
�S1 to any other state �S2 (second term in the right-hand side).

Stationary species abundance distributions P (�S) should satisfy the equations obtained
by putting the right-hand side of (2) equal to zero,

∑

�S2 �=�S1

(
P

(�S2

)
R

(�S2, �S1

) − P
(�S1

)
R

(�S1, �S2

)) = 0, for all �S1. (3)

As the state space of all possible abundance vectors �S is finite (due to fixed community
size JM), many results are known about the stationary distribution. For the transition rates
R(�S1, �S2) that we specify in the next section, it is guaranteed that any initial distribution
P (0, �S) will converge to a unique stationary distribution P (�S) (Van Kampen, 1992).

Nevertheless, the stationary equations (3) are often too complicated to solve explicitly.
A set of equations that is much easier to handle, is given by

P
(�S1

)
R

(�S1, �S2

) = P
(�S2

)
R

(�S2, �S1

)
, for all �S1, �S2. (4)

By imposing these equations, we require that not only the sums in (3) vanish, but each
individual term in (3). The conditions (4) can be readily interpreted. They state that the
frequency of transitions from �S1 to �S2 equals the frequency of transitions from �S2 to �S1. As
every transition should be balanced by its reverse transition, these conditions are known as
detailed balance (Van Kampen, 1992, see also Haegeman and Etienne, 2008). Obviously,
the set of detailed balance conditions (4) is much stronger than the set of conditions (3).
Therefore, if (4) has a solution, it must be the unique stationary distribution P (�S) we are
looking for. However, it can also happen that (4) has no solution at all. We will encounter
examples of both cases.

3. Metacommunity model with generalised speciation

We define a neutral metacommunity model that generalises Hubbell’s model, and the
different models studied in Etienne et al. (2007). As in Hubbell’s model, all transitions
consist of first decreasing the abundance of one species, and next increasing the abundance
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of another species. Suppose that before the transition, the first species has abundance k,
and the second species abundance �. Hence, after the transition, we have one species
less with abundance k, one species more with abundance k − 1, one species less with
abundance �, and one species more with abundance � + 1. The transition therefore goes
from state �S to state �S − �ek + �ek−1 − �e� + �e�+1 (the unit vector �ek has component k equal
to 1, and all other components equal to zero). Note that this is only valid for k > 1 and
� > 0. In the case k = 1, the first species disappears. In the case � = 0, the second species
originates by speciation. The general transition is therefore from �S to

�Sk,� = �S − �ek + �ek−1δk>1 − �e�δ�>0 + �e�+1, (5)

where we introduced to shorthand notation �Sk,� (the delta function δC equals 1 if condition
C is satisfied, and 0 otherwise).

To specify the model completely, we have to choose the transition rates R(�S, �Sk,�), for
which we use the shorthand notation Rk,�(�S) from hereon, for notational convenience.
As mentioned in the introduction, we let the speciation probability ν(�) depend on the
abundance � of the species the newly speciated individual originates from. For transitions
consisting of a death in the first species (abundance k) followed by a reproduction in the
second species (abundance �), the rate is

Rk,�

(�S) = kSk

JM

(
1 − ν(�)

)�S�

JM
, (6a)

because there are Sk species with abundance k, and S� species with abundance �. In the
case k = �, this rate should be modified to exclude transitions where the same species dies
and reproduces (which has no effect in terms of the vector �S):

Rk,k

(�S) = kSk

JM

(
1 − ν(k)

)k(Sk − 1)

JM
. (6b)

Note that we slightly deviate from Hubbell’s model, because in Hubbell’s model the
individual that dies cannot leave off-spring, where here this individual can still con-
tribute to the next generation which is the so-called Moran model (Moran, 1962;
Etienne et al., 2007; Etienne and Alonso, 2007). Finally, for transitions consisting of a
death in the first species followed by a speciation, the rate is

Rk,0
(�S) = kSk

JM

JM∑

m=1

ν(m)
mSm

JM
, (6c)

where the sum is over all species, because each species may have produced the new
species. The total speciation rate Rspec(�S) in the metacommunity can be obtained by sum-
ming the latter transition rate over all abundances k,

Rspec
(�S) =

JM∑

k=1

Rk,0
(�S) =

JM∑

m=1

ν(m)
mSm

JM
. (7)
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We consider a few special cases. To recover Hubbell’s metacommunity model, we take
ν(�) = ν1 independent of �. In that case, we have

Rspec

(�S) = ν1

JM∑

m=1

mSm

JM
= ν1, (8)

which is a constant speciation rate. Because the number of individuals JM is also constant,
every individual has the same probability to speciate. To be precise, this is the continuous-
time version of the Hubbell–Moran model, called M1 by Etienne et al. (2007).

The alternative metacommunity models considered in Etienne et al. (2007) are also
contained in our framework. Taking ν(�) = ν0

�
inversely proportional to �, we get

Rspec

(�S) = ν0

JM∑

m=1

Sm

JM
= ν0

SM(�S)

JM
, (9)

with SM(�S) the number of species in the metacommunity state �S. The speciation rate is
then proportional to the number of species, i.e., every species has the same probability to
speciate. This model was called M0 by Etienne et al. (2007).

Etienne et al. (2007) also investigated two models intermediate between M0 and M1.
One model, Mc , has a speciation rate that linearly combines the speciation rates of models
M0 and M1,

ν(�) = ν0

�
+ ν1. (10)

Another model, Ms , assumes a saturation-type dependence for the speciation rate,

ν(�) = ν1 xs

xs + �
JM

. (11)

The constant xs is a characteristic relative species abundance. A species with relative
abundance �/JM � xs has approximately speciation rate ν1, which is independent of its
abundance; this corresponds to model M1. At the other extreme, a species with relative
abundance �/JM � xs has approximately speciation rate JMν1xs/�, inversely propor-
tional to its abundance �; this corresponds to model M0. Model Ms is arguably biologi-
cally more realistic than model Mc (Etienne et al., 2007).

4. Solving detailed balance conditions

In this section we study the stationary distribution equations (3) with the transition rates
(6a–6c). Although we know that there is a unique distribution satisfying this set of con-
ditions (Van Kampen, 1992), we are only able to solve these equations when the detailed
balance conditions (4) holds. In this case, the detailed balance solution is necessarily the
unique stationary distribution. Because these equations are easy to solve, we obtain ex-
plicitly the stationary distribution. If, on the other hand, conditions (4) cannot be satisfied
simultaneously, our method does not provide a solution. Experience tells us that in such
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cases there is often no closed-form analytical solution. Fortunately, experience also tell us
that solutions to the detailed balance equations can often be found for simple models.

We will proceed as follows. We first write down the detailed balance equations for the
model given by the transition rates (6a–6c). We then consider two subsets of all possible
transitions that leads to a conjecture for the full stationary distribution. We then prove that
this conjecture is indeed correct.

Consider the transition Rk,�(�S) that goes from �S to �Sk,�. Its reverse is the transition
R�+1,k−1(�Sk,�) that goes from �Sk,� back to �S. Detailed balance (4) can then be written as

P
(�S)

Rk,�

(�S) = P
(�Sk,�

)
R�+1,k−1

(�Sk,�

)
, (12)

for k = 1, . . . , JM, � = 0, . . . , JM − 1, and all �S. Imposing detailed balance (12) yields the
ratio of two components of the abundance distribution we are looking for. Repeating this
for different combinations k, � and �S, we can construct the entire distribution, up to a con-
stant, which can be found by requiring that the components of a probability distribution
should sum up to one.

First, we consider transitions that conserve the number of species SM(�S), i.e., transi-
tions without speciation or species extinction. The rates are given by (6a). From (12), we
find

P (�Sk,�)

P (�S)
= Rk,�(�S)

R�+1,k−1(�Sk,�)

=
kSk�S�

J 2
M

(1 − ν(�))

(�+1)(S�+1+1)(k−1)(Sk−1+1)

J 2
M

(1 − ν(k − 1))

= k�

(k − 1)(� + 1)

SkS�

(Sk−1 + 1)(S�+1 + 1)

1 − ν(�)

1 − ν(k − 1)
. (13)

This condition should hold for all k, � (with � �= k) and �S (with fixed SM(�S)). We can
iterate this formula to link the different components of the detailed balance distribution
(if it exists). We show in Appendix A that this leads to

P
(�S) = C1

(
SM

(�S)) JM∏

k=1

1

kSkSk!

(
k−1∏

m=1

(
1 − ν(m)

)
)Sk

, (14)

for all vectors �S (recall that all considered vectors �S have the same number of individu-
als JM). Note that the proportionality factor C1 depends on the state �S only through the
number of species SM(�S).

Next, we investigate transitions in which the number of species changes. For example,
consider a speciation transition Rk,0(�S) with rate given by (6c), together with its reverse
transition R1,k−1(�Sk,0), in which a species goes extinct. From (12),

P (�Sk,0)

P (�S)
= Rk,0(�S)

R1,k−1(�Sk,0)
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=
kSk

J 2
M

∑JM
m=1 mSmν(m)

(S1+1)(k−1)(Sk−1+1)

J 2
M

(1 − ν(k − 1))

= k

k − 1

Sk

(Sk−1 + 1)(S1 + 1)

∑JM
m=1 mSmν(m)

1 − ν(k − 1)
. (15)

At the same time, from (14), we must have

P (�Sk,0)

P (�S)
= P (�S − �ek + �ek−1 + �e1)

P (�S)

= C1(SM(�S) + 1)

C1(SM(�S))

1
(k−1)(Sk−1+1)

1
S1+1

1
kSk

∏k−2
m=1(1 − ν(m))

∏k−1
n=1(1 − ν(n))

= C1(SM(�S) + 1)

C1(SM(�S))

k

k − 1

Sk

(Sk−1 + 1)(S1 + 1)

1

1 − ν(k − 1)
. (16)

Comparing (15) and (16), we see that the proportionality factor C1 has to satisfy

C1(SM(�S) + 1)

C1(SM(�S))
=

JM∑

m=1

mSmν(m), (17)

for all vectors �S. However, the left-hand side of this equation depends on the vector �S
only through the number of species SM(�S). Hence, the detailed balance conditions (12)
can be satisfied only if the probabilities ν(m) are such that

JM∑

m=1

mSmν(m) depends on �S only through SM

(�S)
. (18)

For probabilities ν(m) for which this condition holds, we can define the function V such
that

V
(
SM

(�S)) =
JM∑

m=1

mSmν(m). (19)

Equation (17) can then be rewritten as

C1
(
SM

(�S)) = C2

SM(�S)−1∏

m=1

V (m), (20)

where the proportionality constant C2 does not depend on �S (but it can still depend on JM).
Substituting (20) into (14) leads to

P
(�S) = C2

[
SM(�S)−1∏

m=1

V (m)

][
JM∏

k=1

1

kSkSk!

(
k−1∏

m=1

(
1 − ν(m)

)
)Sk

]
. (21)
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Note that we have constructed the distribution (21) by considering only a subset of the
possible transitions (e.g., we have not used transition rate (6b)). However, in order that
(21) is the stationary distribution, condition (12) should hold for all possible transitions.
In Appendix B we prove that this is indeed the case. Therefore, we have arrived at a
characterisation of the metacommunity model with generalised speciation in terms of
detailed balance:

• If condition (18) holds, the stationary distribution is the detailed balance solution, ex-
plicitly given by (21).

• If condition (18) does not hold, the detailed balance conditions (12) are conflicting. We
cannot find a closed-form analytical solution for the stationary distribution (although a
solution does exist).

We conclude by considering the special cases mentioned previously:

Model M1 (constant speciation rate per individual) corresponds to ν(�) = ν1. In that
case, condition (18) holds, V (m) = ν1JM, and solution (21) becomes

P
(�S) = C3

JM∏

k=1

θSk

kSkSk! with θ = ν1

1 − ν1
JM. (22)

After determining the proportionality constant C3 by normalising the probability distri-
bution, we recover Eq. (2) in (Etienne et al., 2007), closely related to Ewens’ sampling
formula (Ewens, 1972).
Model M0 (constant speciation rate per species) corresponds to ν(�) = ν0

�
. Condition

(18) holds, V (m) = ν0m, and solution (21) becomes

P
(�S) = C4

(
SM

(�S) − 1
)!

JM∏

k=1

ν
Sk

0

kSkSk!

(
k−1∏

m=1

(
1 − ν0

m

))Sk

. (23)

After determining the proportionality constant C4, we recover Eq. (4) in (Etienne et al.,
2007).
Model Mc (linear combination of speciation rates M0 and M1) corresponds to the for-
mula for ν(�) in (10). Condition (18) holds, and we obtain Eq. (5) in (Etienne et al.,
2007).
Model Ms (saturation characteristic between speciation rates M0 and M1) corresponds
to the formula for ν(�) in (11). In that case, condition (18) does not hold, and our method
does not provide the stationary distribution, even though we know that a unique station-
ary distribution exists.

5. Concluding remarks

We have analysed a set of neutral metacommunity models with point mutation speciation,
which is generalised in the sense that any dependence of the speciation rate on species’
abundances is allowed. This set of models includes Hubbell’s model (Hubbell, 2001)
and the models recently introduced by Etienne et al. (2007). Using a master equation
approach and imposing the detailed balance condition, we were able to rigorously obtain
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the stationary species abundance distribution for a subclass of these models. This subclass
includes the simplest speciation assumptions: a total speciation rate proportional to the
number of individuals (as in Hubbell’s model), and a total speciation rate proportional
to the number of species (as proposed by Etienne et al., 2007). For more complicated
speciation processes, such as a speciation rate saturating with species abundance (see
Etienne et al., 2007), detailed balance is not satisfied and therefore does not yield the
stationary distribution.

We have rigorously proved the stationary abundance distributions presented in Etienne
et al. (2007). Based on these distributions Etienne et al. (2007) derived so-called sam-
pling formulas both for the metacommunity and the local community. Sampling formulas
give the species abundance distribution for a sample of individuals randomly taken from
a community. They are therefore of great importance in community ecology as they al-
low us to distinguish between different models of community structure based on species
abundance data of samples rather than the complete community. Species abundance data
are ubiquitous and believed to contain relevant information on the forces shaping ecolog-
ical communities (McGill et al., 2007). Sampling formulas thus provide access to these
forces.

With sampling formulas Etienne et al. (2007) showed that model M1 almost always
outperformed models M0 and Mc in fitting species abundance distributions of various tree
communities. Only tree communities having very abundant species were better explained
by model M0 as highly abundant species are extremely unlikely under model M1 because
the per species speciation rate increases linearly with abundance in the latter model. Eti-
enne et al. (2007) introduced the intermediate model Ms that resembles M0 at high abun-
dances and M1 at low abundances but were not able to derive the stationary abundance
distribution for this more realistic model. Here we have shown that finding a closed-form
expression for this distribution is unlikely due to the fact that detailed balance does not
hold for Ms .

The master equation (2) provides the appropriate mathematical framework to study
speciation processes in neutral community theory, as it describes Markov processes in
terms of abundance vectors for unlabeled species. For example, speciation mechanisms
where new species can originate with several individuals at once, such the random fission
model (Hubbell, 2001), also have a master equation of the form (2). The straightforward
approach to solve the master equation by imposing detailed balance, as used here, does
not work for such more complex models. Other analytical techniques, or different model
assumptions, will be needed to obtain (possibly only approximately) the stationary species
abundance distributions for this type of models.
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Appendix A

In this appendix we argue that (13) implies (14). Transitions (6a) take the system from
state �S to state �S − �ek + �ek−1 − �e� + �e�+1. A species with initial abundance k has lost an
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individual, whereas a species with initial abundance � has gained an individual. By putting
together several transitions of this kind, we can let species lose or gain several individuals.
In particular, we consider a composed transition where n species with initial abundance k

all lose m individuals, and n species with initial abundance � all gain m individuals. The
state vector then changes from �S to �S ′ = �S − n�ek + n�ek−m − n�e� + n�e�+m. This composed
transition thus consists of mn elementary transitions (6a). The ratio P (�S ′)/P (�S) can be
computed by taking a sequence of mn transitions (6a) going from �S to �S ′, and multiplying
the corresponding mn ratios (13) together. This gives

P (�S ′)
P (�S)

=
[

k�

(k − m)(� + m)

]n

× Sk(Sk − 1) . . . (Sk − n + 1)S�(S� − 1) . . . (S� − n + 1)

(Sk−m + 1) . . . (Sk−m + n)(S�+m + 1) . . . (S�+m + n)

×
[

(1 − ν(�))(1 − ν(� + 1)) . . . (1 − ν(� + m − 1))

(1 − ν(k − 1))(1 − ν(k − 2)) . . . (1 − ν(k − m))

]n

. (A.1)

Note that this result does not depend on the chosen sequence of transitions, which is a
necessary condition for detailed balance to hold. Introducing the notation

W(r) =
r−1∏

s=1

(
1 − ν(s)

)
, (A.2)

we can rewrite (A.1) as follows:

P (�S ′)
P (�S)

= kn�n

(k − m)n(� + m)n

× Sk!S�!Sk−m!S�+m!
(Sk − n)!(S� − n)!(Sk−m + n)!(S�+m + n)!

× W(� + m)nW(k − m)n

W(�)nW(k)n

= kSk−S′
k �S�−S′

�

(k − m)S′
k−m

−Sk−m(� + m)S′
�+m

−S�+m

× Sk!S�!Sk−m!S�+m!
(S ′

k)!(S ′
�)!(S ′

k−m)!(S ′
�+m)!

× W(� + m)S′
�+m

−S�+mW(k − m)S′
k−m

−Sk−m

W(�)S�−S′
�W(k)Sk−S′

k

. (A.3)

Reorganising this equation, we get

kSk �S� (k − m)Sk−m(� + m)S�+mSk!S�!Sk−m!S�+m!
W(k)SkW(�)S�W(k − m)Sk−mW(� + m)S�+m

P
(�S)

= kS′
k �S′

� (k − m)S′
k−m(� + m)S′

�+mS ′
k!S ′

�!S ′
k−m!S ′

�+m!
W(k)S′

kW(�)S′
�W(k − m)S′

k−mW(� + m)S′
�+m

P
(�S ′). (A.4)
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The left-hand side is a function of �S (i.e., it does not depend on �S ′), while the right-hand
side equals the same function evaluated in �S ′. Denoting this function by F1,

F1

(�S) =
(

∏

r∈{k,�,k−m,�+m}

rSr Sr !
W(r)Sr

)
P

(�S)
, (A.5)

Eq. (A.4) says that the detailed balance solution (if it exists) satisfies

F1
(�S) = F1

(�S ′), (A.6)

for states �S and �S ′ that are linked by the composed transitions we have been considering,
for variable n and constant k, � and m. Note that the set {k, �, k − m,� + m} in (A.5)
contains the indices of the components of �S that change when going from �S to �S ′. If we
vary k, � and m, the other components of �S can be modified, and we get a more general
condition for the detailed balance solution. Defining the function F2 by

F2

(�S) =
(

JM∏

r=1

rSr Sr !
W(r)Sr

)
P

(�S)
, (A.7)

this more general condition reads

F2

(�S) = F2

(�S ′), (A.8)

for states �S and �S ′ that are linked by composed transitions, for variable k, �, m and n.
In fact, any two states that have the same number of species (they all have the same
number of individuals JM) are linked in this way. Therefore, detailed balance implies that
condition (A.8) holds for all states �S and �S ′ for which SM(�S) = SM(�S ′). In other words,
the detailed balance solution (if it exists) satisfies

P
(�S) = C1

(
SM

(�S)) JM∏

r=1

W(r)Sr

rSr Sr ! , (A.9)

where the proportionality constant C1 depends on the state �S only through the number of
species SM(�S). This is Eq. (14).

Appendix B

In this appendix we verify that the distribution (21) satisfies the detailed balance condi-
tions (12) for the transition rates (6a–6c). These rates can be summarised as

Rk,�

(�S) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

k�SkS�

J 2
M

(
1 − ν(�)

)
if � > 0 and k �= �,

k2Sk(Sk − 1)

J 2
M

(
1 − ν(k)

)
if � > 0 and k = �,

kSk

J 2
M

V
(
SM

(�S))
if � = 0,

(B.1)
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for k = 1,2, . . . , JM and � = 0,1, . . . , JM − 1.
As detailed balance (12) links a transition to its reverse, it suffices to consider tran-

sitions Rk,� with k > �, as their reverses include all Rk′,�′ with k′ ≤ �′, k′ = � + 1 and
�′ = k − 1. Moreover, transitions Rk,� with k = � + 1 leave the vector �S invariant, so that
condition (12) is trivially satisfied. For the remaining cases, this condition can be proved
as follows:

1. For k > � + 2 and � > 0,

P
(�Sk,�

)
R�+1,k−1

(�Sk,�

)

= P
(�S) k�SkS�

(k − 1)(� + 1)(Sk−1 + 1)(S�+1 + 1)

1 − ν(�)

1 − ν(k − 1)

× (k − 1)(� + 1)(Sk−1 + 1)(S�+1 + 1)

J 2
M

(
1 − ν(k − 1)

)

= P
(�S)k�SkS�

J 2
M

(
1 − ν(�)

)

= P
(�S)

Rk,�

(�S)
. (B.2)

2. For k = � + 2 and � > 0,

P
(�Sk,k−2

)
Rk−1,k−1

(�Sk,k−2
) = P

(�S + 2�ek−1 − �ek − �ek−2
)

× Rk−1,k−1
(�S + 2�ek−1 − �ek − �ek−2

)

= P
(�S) k(k − 2)SkSk−2

(k − 1)2(Sk−1 + 2)(Sk−1 + 1)

1 − ν(k − 2)

1 − ν(k − 1)

× (k − 1)2(Sk−1 + 2)(Sk−1 + 1)

J 2
M

(
1 − ν(k − 1)

)

= P
(�S)k(k − 2)SkSk−2

J 2
M

(
1 − ν(k − 2)

)

= P
(�S)

Rk,k−2

(�S)
. (B.3)

3. For k > 2 and � = 0,

P
(�S1,k−1

)
Rk,0

(�S1,k−1

) = P
(�S) kSk

(k − 1)(Sk−1 + 1)(S1 + 1)

V (SM(�S))

1 − ν(k − 1)

× (k − 1)(Sk−1 + 1)(S1 + 1)

J 2
M

(
1 − ν(k − 1)

)

= P
(�S)kSk

J 2
M

V
(
SM

(�S))

= P
(�S)

Rk,0

(�S)
. (B.4)
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4. For k = 2 and � = 0,

P
(�S1,1

)
R2,0

(�S1,1

) = P
(�S − �e2 + 2�e1

)
R1,1

(�S − �e2 + 2�e1

)

= (�S) 2S2

(S1 + 2)(S1 + 1)

V (SM(�S))

1 − ν(1)

× (S1 + 2)(S1 + 1)

J 2
M

(
1 − ν(1)

)

= P
(�S)2S2

J 2
M

V
(
SM

(�S))

= P
(�S)

R2,0

(�S)
. (B.5)
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