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Entropy maximization (EM) is becoming an increasingly popular modelling technique in ecology, but its potential and
limitations are still poorly understood. In our previous contribution (Haegeman and Loreau 2008), we showed that
even a trivial application of EM can yield predictions that provide an excellent fit to empirical data. In his response,
Shipley (2009) distinguishes two different versions of the EM procedure, an information-theoretical version and a
combinatorial version, to justify a trivial application of EM. Here we first provide a brief user’s guide to EM to clarify
the various steps involved in the procedure. We then show that the information-theoretical and combinatorial
rationales for EM are but complementary views on the same procedure. Lastly, we attempt to identify the conditions
that lead to trivial and non-trivial applications of EM. We discuss how non-trivial applications of EM can yield
valuable new insights in ecology.

Entropy maximization (EM) is an inference technique that
has its origins in statistical mechanics (Jaynes 1957), and
that has been applied to many other problems since (Jaynes
2003). Application of the EM formalism to ecological
systems has been very popular in recent years (Shipley et al.
2006, Banavar and Maritan 2007, Pueyo et al. 2007, Dewar
and Porté 2008, Harte et al. 2008), and holds promise to
become an efficient modelling technique in ecology.

In our previous contribution (Haegeman and Loreau
2008), however, we argued that a blind application of the
EM procedure can easily lead to wrong conclusions. As an
example, we analysed the EM application of Shipley et al.
(2006), and showed that the good correspondence between
empirical observations and EM predictions is independent
of the EM procedure in this case. In response to our study,
Shipley (2009) argues that our criticism does not apply to
the EM analysis of Shipley et al. (2006). He introduces two
different versions of the EM procedure: an information-
theoretical version, on which he claims his analysis is based,
and a combinatorial version, on which he claims our
analysis is based.

We feel that this distinction is obfuscating the funda-
mental issue, and will lead to confusion on the true
potential of EM as a method of inference in ecology and
other sciences. We show below that there are two rationales
for the same EM procedure, not two different versions of
the EM procedure. These two rationales are rooted in the
frequency-based and Bayesian interpretations of probability
theory, respectively. Our previous analysis of the limitations

of EM (Haegeman and Loreau 2008) applies to the EM
procedure as such, independently of which rationale is used.

Rather than providing a point-by-point response to
Shipley (2009), we prefer to broaden the debate and make a
number of clarifications that we hope will be useful to all
ecologists who are interested in applying EM to ecological
problems. EM is not a magic recipe that can solve all
problems; its principles are simple, and do not fundamen-
tally differ from those of statistical modelling in general.
Therefore, we first provide a brief user’s guide to EM. We
show that many more assumptions are built in the problem
formulation than often believed, and that different for-
mulations of the same problem are possible. We then
discuss the information-theoretical and combinatorial ra-
tionales of EM, and show that they provide two comple-
mentary views on the same procedure. Lastly, we attempt to
identify the conditions that lead to trivial and non-trivial
applications of EM. We explain why Shipley et al.’s (2006)
application was trivial, and how other applications can be
non-trivial and lead to new fundamental insights in ecology.

A brief user’s guide to EM

We explain the essentials of the EM procedure using the
flow diagram of Fig. 1, together with a graphical repre-
sentation of a basic EM application in Fig. 2. This simple
representation will suffice to make some key points about
the usefulness of EM in ecology.
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Model assumptions (first box in Fig. 1)

Before applying EM, we have to specify what we call a
‘state’ of the system. The variables of the EM problem are
the probabilities of these states. Here we assume for
simplicity that there are a finite number of states S (but
see Appendices 1, 2 for more general examples), and we
denote the probability of state i by pi. We are thus looking
for a probability distribution (p1, p2, . . . , pS). The choice of
a set of states defines a coordinate system in which EM will
be performed (Fig. 2).

Next, we have to specify the constraints that we want to
take into account. These constraints must be formulated in

terms of the variables pi. Imposing the constraints delimits a
region in the set of all possible vectors (p1, p2, . . . , pS),
which we call the feasible set (Fig. 2). Inside the feasible set,
all constraints are satisfied; outside the feasible set, at least
one of the constraints is violated. The EM solution thus
belongs to the feasible set.

It is also possible to incorporate a prior probability
distribution into the EM procedure. This prior distribution
is necessary if we want to assign a larger probability to some
states a priori, before we take the constraints into account. It
could be represented as a vector (q1, q2, . . . , qS) in our
graphical representation, but for simplicity we leave it out
of Fig. 2. In the case of a finite number of states, one can
often do without a prior distribution, which amounts to
assuming a uniform prior distribution.

It is important to realize that the set of states, the
constraints and the prior distribution are closely intercon-
nected. Indeed, the same EM problem can often be
formulated using different choices for the set of states, the
constraints and the prior distribution. Some useful exam-
ples are given in Appendix 1. But modifying the set of
system states can lead to completely different EM predic-
tions. It is therefore crucial to make all the model
assumptions explicit before applying the EM algorithm as
such.

Entropy maximization (second box in Fig. 1)

Once the set of system states, the constraints and the prior
distribution are chosen, we are ready to apply the EM
procedure. This procedure stipulates that the vector (p1,
p2, . . . , pS) that maximizes the entropy function H,

H(p1; :::; pS)��
XS

i�1

pilnpi (1)

should be selected within the feasible set. In other words, we
have to find the probability distribution (p1, p2, . . . , pS)
that maximizes the entropy H while respecting the
constraints. If a prior distribution (q1, q2, . . . , qS) has
been specified, we should maximize the generalized entropy
function HR (where R stands for relative),

HR(p1; :::; pS½q1; :::; qS)��
XS

i�1

piln
pi

qi

(2)

The existence and uniqueness of the EM solution can be
shown mathematically under very general conditions.
Numerical algorithms are available to solve this optimiza-
tion problem efficiently.

Comparison with empirical data (third box in Fig. 1)

If we use the EM formalism for modelling purposes (which
should cover all cases of interest in ecology), we want to
compare the EM prediction with empirical data. In the
simplest applications, the probability distribution predicted
by EM can be compared directly with the observed
probability distribution. In more advanced applications,
however, the comparison between prediction and observa-
tion will often be indirect. In such a case, the experimenter

p1

p2

pS

EM

…

obs

Figure 2. Graphical representation of the EM procedure. By
choosing the set of states {1, 2, . . . , S}, the variables (p1, p2, . . . ,
pS) of the problem are determined. In the coordinate system (p1,
p2, . . . , pS) the constraints delimit the feasible set of states (filled in
light grey). Solving an optimization problem yields the EM
probability vector (indicated by the�cross). In the simplest EM
applications, the EM prediction can be compared directly with an
observed vector (indicated by the x cross).

model assumptions

• system states
• constraints
• prior distribution

entropy
maximization

comparison with
empirical data

Figure 1. Flow diagram of the EM approach. To formulate an
EM problem, three ingredients must be specified: (1) what are the
states of the system, (2) what constraints are taken into account,
and (3) what is the prior distribution. These three ingredients are
then combined in a maximization problem to obtain the EM
prediction. Comparing the EM prediction with empirical data
either corroborates the problem formulation or shows significant
differences between prediction and observation. In the latter case,
the problem formulation can be changed (e.g. by adding
constraints), and the EM procedure can be repeated in the hope
of getting better predictions.
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does not have direct access to the probability distribution of
the EM prediction, but average quantities computed from
the EM probability distribution can be compared with
experimentally accessible quantities.

Whether the comparison between prediction and ob-
servation is direct or indirect, the way to interpret it is similar
to any other modelling approach. If the EM prediction fits
the data well, we can conclude that the information taken
into account in the EM inference (set of states, constraints,
prior distribution) suffices to reproduce the data. If, on the
contrary, the EM prediction differs significantly from
the data, we can conclude that other mechanisms operate
in the observed system. We might then be able to formalize
such mechanisms, change the problem formulation (differ-
ent set of states, other or additional constraints, different
prior distribution), and apply the EM procedure again.

The rationale behind EM

The previous section specifies how the EM procedure is
applied, but it does not explain why the EM procedure
works. Why is it that we should prefer the probability
distribution that maximizes the entropy H subject to the
constraints to describe the system? This question can be
answered in two ways. A first answer has a combinatorial
nature, and was discussed in the recent ecological literature
by Shipley et al. (2006) and Haegeman and Loreau (2008).
A second answer is based on information theory, and is
discussed by Pueyo et al. (2007), Dewar and Porté (2008)
and Shipley (2009). Shipley (2009) boldly opposes the two
approaches and defends the second against the first, which
is all the more surprising since he used the first approach in
his initial contribution (Shipley et al. 2006). Rather than
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Figure 3. Graphical representation of different applications of the EM procedure, using the framework presented in Fig. 2. Here we add a
number of simulated probability vectors, which can be considered as possible microscopic realizations of the system (indicated by thin x
crosses). Each of these realizations corresponds, for instance, to allocating N particles to energy levels or throwing a dice N times under the
EM model assumptions. (A) all the realizations are concentrated around the EM prediction, and the observed vector is situated inside this
scatter of realizations. We conclude that the assumptions underlying the EM model can accurately reproduce the observations. (B) all the
realizations are concentrated around the EM prediction, but the observed probability vector is situated outside this scatter of realizations.
We conclude that the mechanisms at work in the observed system are not described correctly by the EM model. (C) the realizations are
scattered over the entire feasible set. We cannot make any definite conclusion, even though the difference between prediction and
observation may be large. (D) the feasible set if so small (i.e. the constraints in the EM model are so restrictive) that we cannot make any
definite conclusion, even though the correspondence between prediction and observation may be excellent.
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opposing these two rationales, we feel that both provide an
interesting, if different, perspective on the EM procedure.
The two rationales are but expressions of the two
interpretations of probability theory, i.e. the first is rooted
in frequency-based probability theory, while the second is
rooted in Bayesian probability theory.

The information-theoretical justification for EM states
that the information contained in the problem formulation
(set of states, constraints, and prior distribution) is
represented in the least biased way by the EM probability
distribution. Since a distribution with lower entropy
encodes more information by definition, any probability
distribution that satisfies the constraints but has lower
entropy than the EM probability distribution encodes
information that is not contained in the problem formula-
tion. The EM solution takes into account all we know
about the problem, and maximizes the uncertainty regard-
ing all we do not know about the problem.

The combinatorial justification adds some additional
structure to the problem, and, borrowing terminology from
statistical mechanics, distinguishes a microscopic and a
macroscopic level. Consider the example of Shipley (2009)
of repeatedly throwing a dice. The variables at the
microscopic level are the outcomes of all the N�20 000
dice throws. The variables at the macroscopic level are the
relative frequencies of the six outcomes. The combinatorial
argument is based on the fact that the microscopic states are
not evenly distributed over the macroscopic states. Some
macroscopic states contain many more microscopic states
than others. The EM solution gives the macroscopic state
that contains the largest number of microscopic states under
the specified constraints.

The information-theoretical rationale is not based on a
separation between microscopic and macroscopic scales,
and is therefore more general. On the other hand, the
combinatorial rationale can be used to illustrate a crucial
property of the EM solution, which is illustrated graphically
in Fig. 3. For a large scale separation, almost all microscopic
states have their macroscopic state close to the EM
macroscopic state (Jaynes 1979). Stated in terms of the
dice throwing example, almost all series of N�20 000 dice
throws that satisfy the constraints have relative outcome
frequencies close to the EM prediction. This implies that an
observed macroscopic state that differs significantly from
the EM prediction has a very low probability of being the
outcome of the mechanisms encapsulated in the model
assumptions.

Since microscopic states are densely concentrated around
the EM solution, this property allows us to make precise
statistical inferences based on the EM prediction. The larger
the scale separation, the more concentrated the microscopic
states around the EM vector, and the more statistically
significant a given difference between an observed prob-
ability distribution and the predicted EM probability
distribution. Thus, the EM procedure allows us to make
precise predictions only when scale separation is large.
Whether these predictions match empirical data is an
entirely different matter (Fig. 3A�B). Without such a scale
separation, the EM solution is still the ‘best’ probability
distribution we can infer from the available information (as
information theory tells us), but the corresponding predic-
tions will have a large uncertainty. In this case, differences

between predictions and observations will not be statisti-
cally significant and will not allow any strong conclusion to
be drawn (Fig. 3C).

Therefore we feel that the information-theoretical and
combinatorial rationales are complementary, and that both
give valuable insights into the mechanisms underlying the
EM procedure. Shipley’s (2009) attempt to turn them into
two fundamentally different modelling procedures is un-
fortunate. He seeks to illustrate the supposed difference
between the two procedures by opposing the example of
repeatedly throwing a dice (2009) and the example of
allocating particles to energy levels (Haegeman and Loreau
2008). But these two examples are strictly equivalent:
simply replace ‘face of dice’ by ‘energy level’ (there are S
of them) and ‘dice throw’ by ‘particle’ (there are N of
them). In both examples, the number N acts as the scale
separation parameter, which has to be large to obtain
precise predictions. If predictions do not match observa-
tions, the EM model can be changed to get a better match.
Shipley (2009) illustrates this iterative modelling approach
with the dice throwing example, but the particle allocation
example could be used just as well.

A trivial EM application in ecology

Classical applications of EM, such as repeatedly throwing a
dice and allocating particles to energy levels, are represen-
tative of the situations depicted in Fig. 3A and 3B. But
Shipley et al.’s (2006) application of EM corresponds to the
situation depicted in Fig. 3D. In our contribution (Haege-
man and Loreau 2008), we showed that the constraints they
used are so restrictive that the feasible set is extremely small,
so small that any feasible vector is very close to any other
one. Since the observed vector of species abundances
belongs to the feasible set by construction of the EM
problem, any other feasible vector, including the EM
prediction, is necessarily very close to it. In fact, we showed
that the feasible set reduces to a single point in one third of
the communities studied by Shipley et al. (2006), which
makes the EM procedure superfluous.

Therefore Shipley et al.’s (2006) application of the EM
algorithm is largely trivial, and does not bring any new
insight compared with the initial data. The equations
constraining species abundances are no longer underdeter-
mined, and we could directly invert these equations to find
the empirical species abundances again. This problem
concerns the EM procedure itself, and is completely
independent of the rationale one prefers to use. Put in an
information-theoretical context, our critique states that
there is no point in maximizing uncertainty if the
information we have about the problem is such that there
is no (or very little) uncertainty left. Put in a combinatorial
context, our critique states that there is no point in looking
for the macroscopic state that is realized by the largest
number of microscopic states if there is only one (or very
few similar) macroscopic state compatible with the problem
assumptions.

By applying the EM method to a small feasible set, the
basic mechanism allowing inference illustrated in Fig. 2 no
longer works. Shipley (2009) argues that a small feasible set
indicates that the constraints contain a lot of information,
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so that the problem is increasingly better determined. But
what do we learn from this kind of EM application?
Whether a number of arbitrarily chosen traits uniquely
determine species abundances is a mathematical question
that does not specifically require the application of EM, but
can be addressed with other, better suited techniques
(Haegeman and Loreau 2008). Shipley et al.’s (2006) EM
application does not allow any biologically relevant hypoth-
esis to be supported or rejected.

Shipley (2009) claims that the EM problem is justified
by information theory, and does not rely on empirical
assumptions. But this statement is true only for the EM
algorithm as such (Fig. 1, second box), and does not apply
to model assumptions (Fig. 1, first box). He justifies the
assumptions made by Shipley et al. (2006) as if they would
be unique. But we prove in Appendix 2 that a different, and
probably more appropriate, EM problem formulation is
possible for the same system. Our alternative analysis uses a
more detailed set of system states, in which not only
expected species abundances are described, but also the
abundance distributions of all species and the correlations
between them. At this more detailed level of description, we
show that Shipley et al.’s (2006) EM problem formulation
implies an unrealistic Poisson species abundance distribu-
tion. By contrast, we obtain a more realistic log-series
species abundance distribution using recent work on prior
species abundance distributions (Banavar and Dewar 2007,
Pueyo et al. 2007, Dewar and Porté 2008, Harte et al.
2008). Our analysis leads to EM predictions that differ
from Shipley et al. (2006). Note, however, that, because of
the small size of the feasible set, we cannot test the model
assumptions against the empirical data in this particular
case.

Toward non-trivial EM applications in
ecology

The power of the EM mechanism, as illustrated in Fig. 3A
and 3B, consists in obtaining precise predictions from very
little information. This dramatic predictive power relies on
the fact that macroscopic system variables are governed by
statistical mechanisms, so that the modelling problem can
be simplified to a description of the microscopic (set of
states and prior distribution) and macroscopic (constraints)
system structure, without taking into account all the
detailed processes that occur within the system. The
examples we have discussed, such as throwing a dice a large
number of times and allocating a large number of particles
to energy levels, indicate how and why EM then works.
There is a huge unevenness in how microscopic states are
distributed over macroscopic states. In fact, for a large scale
separation, almost all microscopic configurations will lead
to almost the same macroscopic behaviour.

These two examples are but the simplest instances of the
EM mechanism that we are advocating. In the dice
example, all throws are assumed to be independent from
one another, so that a large number of independent events
contribute to the relative frequencies of the various out-
comes. Similarly, in the energy level example, all particles
are assumed to be distributed independently over the
various energy levels, so that a large number of independent

events contribute to the relative occupancies of these energy
levels. Applications to more complex systems, in which
interactions between system components are important, will
typically lack this neat separation between microscopic and
macroscopic levels. Nevertheless, EM can yield precise
predictions even in the case of strongly interacting systems.

There may be little hope to ever find an ecological
system in which a large number of independent events can
be averaged out to describe overall system behaviour as in
statistical mechanics. Nevertheless, statistical mechanisms
also operate in ecological systems, and these mechanisms
should be amenable to non-trivial applications of EM. We
understand that this was the commendable ambition of
Shipley et al. (2006), and we regret very much that Shipley
(2009) now wants to reduce the application of EM to a
mere analysis of how the constraints determine the
prediction. This analysis can be performed using more
powerful techniques such as those we presented in Haege-
man and Loreau (2008). By contrast, the EM technique is
most useful in predicting a system’s macroscopic behaviour
arising from statistical mechanisms.

Harte et al. (2008) recently presented an interesting EM
application in ecology along these lines. They followed a
two-step approach to predict the spatial structure of
communities. First, they took the total number of indivi-
duals and the total number of species as macroscopic
constraints, and used EM to predict the species abundance
distribution. This is a log-series distribution, in agreement
with previous work (Banavar and Maritan 2007, Pueyo
et al. 2007, Dewar and Porté 2008). Next, they applied EM
a second time to predict the spatial distributions of the
various species, using their predicted total abundance as
constraints. Lastly, by combining the species abundance
distribution and the spatial distributions of the various
species, they derived predictions for species�area relation-
ships, which fit empirical data very well. In this case, the
EM procedure yields a number of interesting ecological
patterns, such as species abundance distributions and
species�area relationships, after imposing a limited number
of basic constraints, such as the total number of individuals,
the total number of species and the total area occupied by
the community. This disproportion between constraints
and predictions, which is strikingly different from Shipley
et al.’s (2006) application, strongly suggests a non-trivial
application of EM. Although quantification of the number
of independent events that have contributed to these
patterns is un-feasible, we hypothesize that a large scale
separation lies at the origin of these successful predictions.
An interesting topic for future research would be to evaluate
the extent to which scale parameters in the EM approach
are related to prediction precision.

We believe that the most promising application of EM
in ecology will be to assess whether and which ecological
patterns are amenable to a statistical mechanistic approach.
Whether one prefers to use a combinatorial or an informa-
tion-theoretical rationale to justify EM will then be a minor
issue. A critical ingredient of successful applications of EM
seems to be the large separation between the microscopic
scale on which ecological processes operate and the
macroscopic scale on which the ecological system is
observed. Another key requirement is that the problem be
formulated in the most efficient form, by appropriately

1274



choosing the system states, the constraints, and the prior
distribution. Applied in this judicious way, EM will likely
yield valuable, highly non-trivial new ecological insights.
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Appendix 1

In this appendix we illustrate how the various components
of the initial formulation of the EM problem (set of states,
constraints, prior distribution) are interrelated, and how
different choices are possible for the same problem. We also
introduce the notation used in Appendix 2, in which we
present an alternative EM analysis of Shipley et al.’s (2006)
data.

To state an EM problem, we first have to enumerate the
possible states of the system. The set of system states is
denoted by X, the individual system states by x. The set of

states X can be finite, denumerable infinite, or continuous.
All the examples discussed in this paper have a discrete set
of states X. Probability distributions on the set of states X
are denoted by P, so that the probability of a state x � X is
given by P(x). The constraints on the system can be
expressed in terms of the probabilities P(x). The prior
distribution on the set of states X is denoted by Q, so that
the prior probability of a state x � X is denoted by Q(x).

There is a close connection between the set of states X,
the constraints, and the prior distribution Q. Indeed, it is
possible to formulate the same EM problem by making
different choices for the set of states, the constraints and the
prior distribution. As an example, we consider an EM
problem that consists in determining the composition of a
community made up of N individuals and S species. We
contrast two different choices for the set of system states.

First choice of set of states
We choose system states x that specify how many
individuals belong to each of the S species. The system
state x is then a vector N

0
with S components: x�/N

0
�(N1,

N2, . . ., NS). However, only the vectors N
0

for which

XS

i�1

Ni�N (3)

holds have the correct number of individuals N. This
restriction can be incorporated in the set of states, i.e., we
only consider states N

0
that have the correct number of

individuals N (alternatively, Eq. 3 could be imposed as a
constraint). For example, the vector N

0
�(2,1) tells us that

two individuals belong to the first species, and 1 individual
to the second species. There are four possible states N

0
with

N�3 and S�2, listed in the left column of Table A1.

Second choice of set of states
We choose system states x that specify to which species each
individual belongs. The system state x is then a vector S

0

with N components: x�/S
0
�(S1, S2, . . ., SN). For example,

the vector S
0
�(1,2,1) tells us that the first individual

belongs to species 1, the second individual belongs to
species 2, and the third individual belongs to species 3.
There are 23�8 possible states S

0
with N�3 and S�2,

listed in the right column of Table A1.
The correspondence between vectors S

0
and vectors N

0
is

illustrated in Table A1. For example, only S
0
�(1,1,1)

corresponds to N
0
�(3,0), but there are three vectors S

0

corresponding to N
0
�(2,1). Generally, there are

M(N
0

)�
N

N1:::NS

� �
�

N!

N1!:::NS!
(4)

vectors S
0

corresponding to a given vector N
0
: Note that the

multiplicity factor M(/N
0

) can take very unequal values for
large values of N. Evenly distributed communities are
described by a vector N

0
with a large multiplicity M(/N

0
);

communities with a few highly abundant species are
described by a vector N

0
with a small multiplicity M(/N

0
):

The latter remark has important consequences for the
formulation of the EM problem. Indeed, consider the
following EM problem formulations (set of states and prior
distribution):

Table A1. The set of states for a system consisting of N�3
individuals and S�2 species. In the left column, states are described
by a vector N

0
that specifies how many individuals each species

contains. In the right column, states are described by a vector S
0

that
specifies to which species each individual belongs. Some states N

0

correspond to M(/N
0

)�1 state S
0

; other states N
0

correspond to M(/N
0

)�
3 states S

0
: This difference in multiplicity will eventually lead to

different EM predictions.

/N
0
�(3,0) /S

0
�(1,1,1)

/N
0
�(2,1) /S

0
�(1,1,2), S

0
�(1,2,1), S

0
�(1,2,2)

/N
0
�(1,2) /S

0
�(1,2,2), S

0
�(2,1,2), S

0
�(2,2,1)

/N
0
�(0,3) /S

0
�(2,2,2)
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Formulation 1
We choose system states x�/N

0

(with N individuals and S
species, N and S fixed), and do not specify a prior
distribution Q(/N

0
): Hence, all vectors N

0
have the same

prior probability.

Formulation 2
We choose system states x�/S

0
(with N individuals and S

species, N and S fixed), and do not specify a prior
distribution Q(/S

0
): Hence, all vectors S

0
have the same

prior probability.

The two problem formulations are not equivalent due to
the multiplicity factor M(/N

0
): Indeed, vectors N

0
do not all

have the same prior probability in Formulation 2, because

some vectors N
0

(namely those representing evenly distrib-
uted communities) correspond to (many) more vectors S

0

than other vectors N
0
: Formulation 2 will therefore,

compared to Formulation 1, favour evenly distributed
communities.

The difference between Formulations 1 and 2 can be
compensated by introducing a prior distribution Q. For
example, the following formulation is equivalent to For-
mulation 2:

Formulation 3
We choose system states x�/N

0
(with N individuals and S

species, N and S fixed), and take as prior distribution

Q (N
0

)8M(N
0

)8
YS

i�1

1

Ni!
(5)

Hence, vectors N
0

get a prior probability proportional to
their multiplicity, so that all vectors S

0
have the same prior

probability.

Appendix 2

Here we provide an alternative EM analysis of the trait-
based study of plant communities performed by Shipley
et al. (2006). Our analysis applies the EM procedure on a
deeper level than Shipley et al. (2006), and illustrates that
other EM analyses of the same data are possible, leading to
different EM predictions.

System states
In Shipley et al. (2006) the system states correspond to the
S�30 plant species that were observed in at least one of the
12 communities. The EM algorithm is used to determine
the probability pi that an individual (or ‘‘resource unit’’, see
Shipley et al. (2006)) is allocated to species i (i�1, . . ., S).
We call this the one-individual description.

In our alternative EM analysis of Shipley et al.’s (2006)
problem, we consider a much larger set of states. We
describe a system state by a vector N

0
�(N1, . . ., NS) with a

fixed number of individuals N and a fixed number of
species S (Appendix 1). Applying the EM algorithm yields a
probability P(/N

0
) for every abundance vector N

0
: We call

this the many-individuals description.

To illustrate the difference between the one-individual
and the many-individuals descriptions, we compute the
number of one-individual and many-individuals states for a
community of N�1000 individuals. In the one-individual
description, the number of states equals the number of
species S�30. In the many-individuals description, the
number of states equals the number of vectors N

0
having

N�1000 individuals and S�30 species, i.e.

(N � S � 1)!

N!(S � 1)!
:6�1057

The many-individuals description is thus much more
detailed than the one-individual description. It describes
not only the expected relative abundances pi of the various
species, but also the abundance distributions of all species
and the correlations between them.

Constraints
We follow Shipley et al. (2006), and impose T�8 trait
constraints. Rather than using the probabilities pi for a one-
individual state i, the constraints have to be formulated in
terms of the probabilities P(/N

0
) for a many-individuals state

N
0
: We denote by tij the trait value of species i for trait j

(i�1, . . . , S and j�1, . . . , T), by t̄j the community-
aggregated trait values (j�1, . . . , T), and by N̄ the
expected number of individuals in the community. The
trait constraints are

X
N
0

P(N
0

)
XS

i�1

tijNi� t̄jN̄ for all j�1; . . . ; T (6)

The left-hand side equals the expected value of trait j for
the total community; the right-hand side uses the commu-
nity-averaged trait values t̄j to express the same quantity.

The 8 trait constraints have to be supplemented with
two additional constraints. We use the expected number of
individuals N̄ in the community, which is related to the
distribution P(/N

0
) by

X
N
0

P(N
0

)
XS

i�1

Ni�N̄ (7)

There is also the normalization condition given byX
N
0

P(N
0

)�1 (8)

Prior distribution
We look for an appropriate prior distribution Q(/N

0
) on the

system states N
0
: For EM applications like throwing a dice

N times or allocating N particles to energy levels, the prior
distribution (5) can be used, i.e.

Qdice(N
0

)�
YS

i�1

1

Ni!
(9)

As we showed in Appendix 1, this choice assigns the same
prior probability to all vectors S

0
: For the dice throwing

example, this means that all sequences of N outcomes have
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an equal prior probability, which seems a reasonable
assumption.

However, some authors have argued that the prior
distribution relevant for ecological communities should be
different (Banavar and Maritan 2007, Pueyo et al. 2007,
Dewar and Porté 2008, Harte et al. 2008). Based on quite
different ideas, they all arrived at a prior distribution Q(/N

0
)

of the form

Qecol(N
0

)�
YS

i�1

1

Ni � c
(10)

Although they used different values for constant c, there
seems to be general agreement that the factors in Qecol(/N

0
)

should be approximately 1/Ni for large Ni. The heavy-tail
distribution of Qecol(/N

0
) contrasts sharply with the quickly

decaying behaviour of Qdice(/N
0

) for large Ni.

EM problem
Solving the EM optimization problem given the set of
states, constraints, and prior distribution is merely a
technical issue. We have to maximize the relative entropy
(2) with respect to Q(/N

0
);

X
N
0

P(N
0

)ln
P(N

0
)

Q (N
0

)

subject to the T�2 constraints (6�8). Introducing the
Lagrange multipliers lj for the trait constraints (6) and l0

for constraint (7), the EM solution reads

P(N
0

)8Q (N
0

)
YS

i�1

e

�
�
l0�

PT

j�1

lj tij

�
Ni

(11)

The proportionality constant can be determined from the
normalization constraint (8).

First, consider the prior Qdice(/N
0

): Substituting (9) into
(11),

/P(N
0

)8
QS

i�1

1

Ni!
e�ðl0�a

T

j�1lj tijÞNi

we obtain independently distributed species abundances Ni.
The abundance Ni of species i obeys a Poisson distribution
with mean N̄i given by

N̄i�e

�
�
l0�

PT

j�1

lj tij

�

(12)

To determine the Lagrange multipliers, we substitute
(12) into (6),

XS

i�1

tije

�
�
l0�

PT

k�1

lk tik

�

� t̄jN̄ for all j�1; :::; T (13)

Similarly, substituting (12) into (7) gives

XS

i�1

e

�
�
l0�

PT

j�1

lj tij

�

�N̄ (14)

Dividing (13) by (14), we get

XS

i�1

tij

e

�

XT

k�1

lktik

X
m

e

�
XT

l�1

lltml

� t̄j (15)

which is a system of T equations for the T Lagrange
multipliers lj. One can check that equations (15) are
identical to the equations provided by Shipley et al. (2006).
As a result, the Lagrange multipliers of both problems are
identical, and the solution (p1, . . ., pS) of Shipley et al.
(2006) satisfies

pi�
e

�
XT

k�1

lktik

X
m

e

�

XT

l�1

lltml

�
N̄i

N̄

This formula shows that the one-individual problem is
embedded in the many-individuals problem with the prior
Qdice(/N

0
): The one-individual solution (p1, . . . , pS) is

recovered as the expected relative abundance N̄i//N̄ of the
many-individuals solution P(/N

0
):

Next, we consider the prior Qecol(/N
0

): Substituting (10)
into (11),

P(N
0

)8
YS

i�1

1

Ni � c
e

�
�
l0�

PT

j�1

lj tij

�
Ni

we obtain independently distributed species abundances Ni.
The probability distribution of the abundance Ni of species
i is closely related to the log-series distribution. The
equations for the Lagrange multipliers lj can be derived
in a similar way as we did for the prior Qdice(/N

0
): However,

in the case of the prior Qecol(/N
0

); these equations are not
related to the equations for the Lagrange multipliers of
Shipley et al. (2006). As a result, the solution of the many-
individuals problem with the prior Qecol(/N

0
) is not related to

the solution of the one-individual problem.

Discussion
We have presented a many-individuals EM analysis as an
alternative to the one-individual approach in Shipley et al.
(2006). In the one-individual description, the choices for
the EM model assumptions appeared to be unique.
However, the analysis on the many-individuals level shows
that this uniqueness is deceptive; on the many-individuals
level different EM approaches are possible. In particular,
we used two different choices for the prior distribution,
Qdice(/N

0
) and Qecol(/N

0
):

Using the prior Qdice(/N
0

); we retrieved the one-indivi-
dual problem in a many-individuals setting. This result is
not surprising since Qdice(/N

0
) yields an analogous embed-

ding for the examples of repeatedly throwing a dice and
allocating particles to energy levels. The statistics of the
latter two problems are correctly described by a Poisson
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distribution. However, a Poisson species abundance dis-
tribution is unrealistic from an ecological point of view.

Using the prior Qecol(/N
0

); we obtained a log-series species
abundance distribution, for which there is much more
empirical support than for the Poisson distribution. Again,
this result is not surprising, as Qecol(/N

0
) was devised to

obtain realistic species abundance distribution (Banavar and
Maritan 2007, Pueyo et al. 2007, Dewar and Porté 2008,
Harte et al. 2008). The many-individuals EM problem with

the prior Qecol(/N
0

) is unrelated to the one-individual EM
problem studied by Shipley et al. (2006).

We conclude that the EM analysis of Shipley et al. (2006)
is not unique. The assumptions underlying their analysis are
somehow hidden in the one-individual description, but
these assumptions appear clearly in the many-individuals
description. We have showed that these assumptions may
not be most appropriate, and that other assumptions yield
more realistic species abundance distributions.
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