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abstract: Entropy maximization (EM, also known as MaxEnt) is
a general inference procedure that originated in statistical mechanics.
It has been applied recently to predict ecological patterns, such as
species abundance distributions and species-area relationships. It is
well known in physics that the EM result strongly depends on how
elementary configurations are described. Here we argue that the same
issue is also of crucial importance for EM applications in ecology.
To illustrate this, we focus on the EM prediction of species-level
spatial abundance distributions. We show that the EM outcome de-
pends on (1) the choice of configuration set, (2) the way constraints
are imposed, and (3) the scale on which the EM procedure is applied.
By varying these choices in the EM model, we obtain a large range
of EM predictions. Interestingly, they correspond to spatial abun-
dance distributions that have been derived previously from mech-
anistic models. We argue that the appropriate choice of the EM model
assumptions is nontrivial and can be determined only by comparison
with empirical data.

Keywords: spatial abundance distribution, scale transformation, prior
distribution, random-placement model, broken stick model, HEAP
model.

Introduction

Entropy maximization (EM) is an inference technique that
originated in statistical mechanics (Jaynes 1957, 2003). The
philosophy behind EM inference is to provide the prob-
ability distribution (which we denote P(x)) over system
configurations (which we denote x) that corresponds best
to the available information. Because a probability distri-
bution with higher entropy encodes less information, the
probability distribution that corresponds best to the avail-
able information, formulated in terms of constraints, can
be found by maximizing the entropy subject to these
constraints.

Recently, several studies have explored EM inference in
ecological problems (Shipley et al. 2006; Banavar and Ma-
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ritan 2007; Pueyo et al. 2007; Dewar and Porté 2008; Hae-
geman and Loreau 2008; Harte et al. 2008). Most attention
has been paid to EM inference of species abundance dis-
tributions (Banavar and Maritan 2007; Pueyo et al. 2007;
Dewar and Porté 2008), but Harte et al. (2008) provide
an exception: they apply EM to simultaneously predict,
with a minimal number of assumptions (constraints), sev-
eral macroecological patterns, such as species abundance
distributions and species-level spatial abundance distri-
butions, that together give species-area relationships. In
this article, we zoom in on EM inference of spatial abun-
dance distributions.

We treat the spatial abundance distribution of a given
species in a simple, spatially implicit manner. We divide
a spatial region in M cells and then describe the arrange-
ment of N individuals over these cells. This description is
spatially implicit because we do not take into account the
correlations that might exist between neighboring cells. As
a consequence, all abundance distributions that we con-
sider are unchanged with random permutation of the cells.
Note that this is also the approach taken in different mech-
anistic models (Coleman 1981; Harte et al. 2005, 2008;
Conlisk et al. 2007).

However, this description of spatial abundance distri-
bution by itself does not suffice to apply the EM algorithm.
The complete specification of an EM problem requires a
number of additional assumptions. These assumptions
might appear incidental on first sight, but we show here
that they have a major effect on the EM prediction: it
turns out that there is not a single EM prediction for the
spatial abundance distribution but a myriad of distribu-
tions that are obtained under various assumptions, none
of which seems to stand out as the most plausible. Inter-
estingly, most of these distributions were obtained as the
outcome of process-based models, including the discrete
broken stick model (MacArthur 1960), the random-place-
ment model (Coleman 1981), and the single-division
model (Conlisk et al. 2007).

To introduce the general framework of the EM ap-
proach, we distinguish the formulation of the EM problem
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from its solution. Whereas the solution of an EM problem
can be found with a purely technical recipe, the formu-
lation of the EM problem requires a number of assump-
tions that can have an important effect on the solution.
We first present different EM assumptions for the predic-
tion of the abundance distribution over spatial cells. The
corresponding EM problems are solved systematically in
the subsequent section.

Formulating the EM Problem for Spatial Distributions

Formulating the EM problem consists of three steps (Hae-
geman and Loreau 2009): specifying (1) system configu-
rations, (2) the prior distribution over the system config-
urations, and (3) the constraints on the system
configurations. We will discuss these three steps in order.

Specifying the System Configurations

An EM problem formulation starts with specification of
the system configurations. For the case of spatial abun-
dance distribution, there are two obvious and simple ways
to do so. The first is to specify for every individual to
which cell it belongs. Such a system configuration is de-
noted by a vector m: its nth component, mn, gives the cell
to which the nth individual belongs. The number of com-
ponents of m gives the number of individuals,

N(m) p number of components of m. (1)

The second way to specify the system configuration is
to specify for every cell the number of individuals it con-
tains. Such a system configurations is denoted by a vector
n: its mth component, nm, gives the number of individuals
belonging to cell m. The number of components of n
equals the number of cells M. The number of individuals
in configuration n is

M

N(n) p n . (2)� m
mp1

We consider both configurations m and n, and we will
show that the seemingly innocent choice between them
can lead to completely different EM predictions. We will
call them labeled and unlabeled configurations, respec-
tively, because configurations m presuppose that individ-
uals are labeled (we know for each individual to which
cell it belongs), whereas configurations n do not require
labels for individuals (we merely count the number of
individuals in each cell; their identities are lost).

We illustrate the difference between labeled and unla-
beled system configurations for a region with cellsM p 2
and individuals. An example of a labeled config-N p 3

uration is the vector , meaning that the firstm p (1, 1, 2)
individual belongs to cell 1, the second individual belongs
to cell 1, and the third individual belongs to cell 2. There
are eight labeled configurations with and :M p 2 N p 3
(1, 1, 1), (1, 1, 2), (1, 2, 1), (2, 1, 1), (1, 2, 2), (2, 1, 2),
(2, 2, 1), and (2, 2, 2).

An example of an unlabeled configuration is the vector
, meaning that the first cell contains two indi-n p (2, 1)

viduals, and the second cell contains one individual. There
are four unlabeled configurations with andM p 2 N p

: (3, 0), (2, 1), (1, 2), and (0, 3).3
Clearly, there are more labeled than unlabeled config-

urations. In fact, every labeled configuration corresponds
to exactly one unlabeled configuration, but a given un-
labeled configuration can correspond to several labeled
configurations. In this example, the link between the two
types of configurations is

(1, 1, 1) (1, 1, 2) (1, 2, 1) (2, 1, 1)\ \
(3, 0) (2, 1)

(1, 2, 2) (2, 1, 2) (2, 2, 1) (2, 2, 2).\ \
(1, 2) (0, 3)

Note that not all unlabeled configurations correspond to
the same number of labeled configurations: vector n p

has one labeled configuration, whereas vector(3, 0) n p
has three. In general, the number M(n) of labeled(2, 1)

configurations that correspond to a given unlabeled con-
figuration n is given by a multinomial coefficient,

N !NM(n) p p . (3)( )n n !n ! … n !1 2 M

Specifying the Prior Distribution over
the System Configurations

Next, one must specify a prior distribution on the set of
system configurations. This prior distribution corresponds
to the probabilities one would attribute to the configu-
rations if no constraints were imposed on the system. Typ-
ically, an uninformative prior is chosen, giving equal prob-
ability to all configurations. We denote the prior
distribution P0(x), where x represents the configuration
(either labeled, , or unlabeled, ). For an un-x p m x p n
informative prior, the distribution P0(x) is simply a
constant.

We could, however, choose any distribution for the
prior. A particular choice for the labeled configurations m
could be
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1
P (m) p , (4)0 M(n(m))

where n(m) is the unlabeled configuration that corre-
sponds to the labeled configuration m. This prior, defined
on system configurations m, makes all unlabeled config-
urations n equally probable. We thus observe that speci-
fying the system configuration and specifying the prior are
in some sense interchangeable.

Specifying the Constraints on the System Configurations

Finally, we have to specify the constraints we want to take
into account in the EM problem. We consider two types
of constraints: hard and soft constraints. A hard constraint
restricts the set of system configurations to a particular
subset, thus ruling out configurations that fall outside this
subset. In other words, all configurations not satisfying the
constraint have zero probability. For spatial distributions,
one could consider only configurations with a specified
number of individuals N. This can be formulated as

N(x) p N, (5)

with the function N(m) for labeled configurations given
in equation (1) and the function N(n) for unlabeled con-
figurations given in equation (2).

A soft constraint does not restrict the system configu-
rations but acts on statistics of the system configurations.
For spatial distributions, one could impose that the mean
number of individuals in the EM solution has a specified
number of individuals N. This can be formulated as

P(x)N(x) p N, (6)�
x

where P(x) is the EM probability distribution we are trying
to solve for and N(x) is given by equation (1) for labeled
configurations m and equation (2) for unlabeled config-
urations n. Thus, a soft constraint does not completely
rule out some configurations but effectively assigns dif-
ferential nonzero probabilities to them.

General Recipe for Solving the EM Problem

Once the set of system configurations, the prior distri-
bution, and the hard and/or soft constraints have been
specified, the EM problem can readily be solved. The so-
lution consists of finding the probability distribution P(x)
that maximizes the relative entropy subject to theH(PFP )0

constraints. The relative entropy with respect to the prior
distribution P0(x) is given by

P(x)
H(PFP ) p � P(x) ln . (7)�0 P (x)x 0

For an uninformative prior (i.e., P0(x) independent of x),
maximizing relative entropy is equivalent to max-H(PFP )0

imizing Shannon entropy H(P),

H(P) p � P(x) ln P(x). (8)�
x

Solution methods for this maximization problem are
well known. If all constraints are of the hard type, max-
imizing (relative) entropy is particularly simple. Config-
urations that satisfy all constraints have a probability pro-
portional to the prior distribution P0(x); configurations
that do not satisfy all constraints have zero probability.
Hence, the EM solution reads

1
P(x) p P (x),0Z

if x satisfies all constraints, where Z is a normalization
constant given by

Z p P (x), (9)� 0
x

where the sum is over all vectors x that satisfy the hard
constraint. This guarantees that

P(x) p 1.�
x

If there are soft constraints, one can use the technique
of Lagrange multipliers. For the soft constraint (6), the
EM solution can be written in terms of a corresponding
Lagrange multiplier a,

1
�aN(x)P(x) p P (x)e ,0Z

if x satisfies all hard constraints, with the normalization
constant given by

�aN(x)Z p P (x)e ,� 0
x

where the sum runs over vectors x that satisfy all hard
constraints. The Lagrange multiplier a must be deter-
mined by imposing the soft constraint (6). The latter con-
straint can be rewritten as

�
N p � ln Z,

�a
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which often allows one to solve explicitly for a.
It should be noted that the same EM problem can be

written in different ways: different combinations of system
configurations, prior distribution, and constraints can
yield equivalent EM problems. A first example concerns
exchangeability of constraints and system configurations:
instead of imposing a hard constraint on the set of system
configurations, one could equivalently start out with a
smaller set of system configurations. A second, less trivial,
example concerns the exchangeability of the prior distri-
bution P0 and the specification of the system configura-
tions, to which we already alluded in the previous section:
the EM problem formulated in terms of labeled config-
urations m with an uninformative prior isP (m) ∝ 10

equivalent to the EM problem formulated in terms of
unlabeled configurations n with an informative prior

. Thus, an alternative definition of the setP (n) ∝ M(n)0

of system configurations can be mimicked by introducing
an appropriate prior distribution.

The latter fact is particularly important for the next
section. It implies that the EM problem with labeled con-
figurations and an uninformative prior is not equivalent
to the EM problem with unlabeled configurations and an
uninformative prior. The ratio between the two EM so-
lutions is given by the multiplicity factor (eq. [3]). To see
that this factor drastically modifies the EM distribution,
consider the example of individuals distributedN p 6
over cells. The multiplicity factors for the mostM p 3
and least even distributions, andn p (2, 2, 2) n p1 2

, respectively, are and .(6, 0, 0) M(n ) p 90 M(n ) p 11 2

In other words, whereas the EM problem in terms of un-
labeled configurations assigns the same prior probability
to n1 and n2, the EM problem in terms of labeled config-
urations assumes that the even configuration n1 is a priori
90 times as probable as the clustered configuration n2.
Therefore, these two EM problems will lead to very dif-
ferent predictions (the EM prediction for labeled config-
urations will give relatively more weight to evenly distrib-
uted configurations than will the EM prediction for
unlabeled configurations). Obviously, these differences be-
come even more pronounced for larger M and N.

EM Solutions for Spatial Distributions

In this section, we study all four EM problems for spatial
distributions that result from different combinations of
(1) working with either labeled or unlabeled configura-
tions and (2) using either hard or soft constraints to im-
pose a total number of individuals. In all cases we assume
an uninformative prior on the system configuration. Here
we summarize the results and discuss similarities and dif-
ferences between different EM solutions; we refer to the
appendixes for the formal derivations.

Labeled Configurations with a Hard Constraint

With an uninformative prior on labeled configurations, all
vectors m have equal probability. The EM problem for
labeled configurations with a hard constraint is solved in
appendix A. The resulting probability distribution for un-
labeled configurations n is (see eq. [A3])

1N(lab, hard)P (n) p , (10)M, N N( )n M

where P(lab, hard) denotes the probability distribution that
results from applying the EM procedure for labeled con-
figurations with a hard constraint.

Equation (10) is a joint distribution for the abundances
of all cells, which we call a “multicell abundance distri-
bution.” For this EM problem, the multicell abundance
distribution is multinomial: all individuals are placed in-
dependently in one of the M cells, and every cell has the
same probability that a given individual is assigned1/M
to that cell. This is the spatial abundance distribution for
the random-placement (RP) model (Coleman 1981).

From equation (10) we can compute the marginal dis-
tribution for the abundance of any one cell, which we call
the “one-cell abundance distribution.” It is given by

N�n1

1 1N(lab, hard)P (n ) p 1 � (11)M, N 1 n( ) ( )1n M M1

for , which is a binomial distribution.n ≤ N1

Labeled Configurations with a Soft Constraint

The EM problem for labeled configurations with a soft
constraint is solved in appendix A. The resulting proba-
bility distribution for unlabeled configurations n is (see
eq. [A6])

N(n)

1 NN(n)(lab, soft)P (n) p , (12)M, N ( ) [ ]n N � 1 M(N � 1)

where P(lab, soft) denotes the probability distribution that
results from applying the EM procedure for labeled con-
figurations with a soft constraint.

The one-cell abundance distribution is the marginal of
the multicell abundance distribution (12) and is given by

n1

M N
(lab, soft)P (n ) p , (13)M, N 1 ( )N � M N � M

which is a geometric distribution with mean . TheN/M
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distribution for the total number of individuals N(n) is
given by

N(n)

1 N
(lab, soft)P (N(n)) p , (14)M, N ( )N � 1 N � 1

which is a geometric distribution with mean N (note that
the soft constraint requires that the mean equals N). The
link with the hard-constraint solution (10) can be made
by conditioning on the total number of individuals,

(lab, soft) (lab, hard)P (nFN(n) p K) p P (n). (15)M, N M, K

Unlabeled Configurations with a Hard Constraint

With an uninformative prior on unlabeled configurations,
all vectors n have equal probability. The EM problem for
unlabeled configurations with hard constraint is solved in
appendix B. The resulting probability distribution for un-
labeled configurations n is (see eq. [B2])

N � M � 1(unl, hard)P (n) p 1 , (16)( )ZM, N N

where P(unl, hard) denotes the probability distribution that
results from applying the EM procedure for unlabeled con-
figurations with a hard constraint.

The multicell abundance distribution (16) gives, by con-
struction, equal weight to all unlabeled configurations.
Specifying an unlabeled configuration for M cells and N
individuals is equivalent to splitting a community of N
individuals into M parts. The idea that all such splits are
equally probable is reminiscent of the discrete broken-stick
(DBS) model (MacArthur 1960; Etienne and Olff 2005)
for the distribution of species’ abundances. Distribution
(16) can be interpreted as the spatial counterpart of the
DBS species abundance distribution, with one main dif-
ference: whereas in the species abundance distribution
each species has at least one individual, in the spatial abun-
dance distribution cells may be empty. From distribution
(16) we can compute the one-cell abundance distribution
(see eq. [B3])

N � n � M � 2 N � M � 1(unl, hard) 1P (n ) p (17)ZM, N 1 ( ) ( )N � n N1

for .n ≤ N1

Unlabeled Configurations with a Soft Constraint

The EM problem for labeled configurations with a soft
constraint is solved in appendix B. The resulting proba-
bility distribution for unlabeled configurations n is (see
eq. [B5])

nmM
M N

(unl, soft)P (n) p , (18)�M, N ( )( )mp1 N � M N � M

where P(unl, soft) denotes the probability distribution that
results from applying the EM procedure for unlabeled con-
figurations with soft constraint.

The multicell abundance distribution (18) has a simple
structure: it is the product of independent one-cell abun-
dance distributions, each of which is given by

n1

M N
(unl, soft)P (n ) p . (19)M, N 1 ( )N � M N � M

This is a geometric distribution with mean . The dis-N/M
tribution for the total number of individuals N(n) is given
by

M N(n)

M NN(n) � M � 1(unl, soft)P (N(n)) p ,M, N ( )( ) ( )N(n) N � M N � M

(20)

which is a negative binomial distribution. The link with
the hard-constraint solution (16) can be made by con-
ditioning on the total number of individuals,

(unl, soft) (unl, hard)P (nFN(n) p K) p P (n). (21)M, N M, K

Link between Hard- and Soft-Constraint Solutions

For both labeled and unlabeled configurations, the EM
problems with hard and soft constraints on the number
of individuals yield related results. The relationship is given
in equations (15) and (21): the soft-constraint solution
conditioned on the total number of individuals N(n) p

equals the hard-constraint solution for the total numberK
of individuals K. This conditioning property is generally
valid for EM solutions.

The difference between hard- and soft-constraint EM
solutions resides in their distribution for the total number
of individuals N(n). For the hard constraint, the distri-
bution for N(n) is concentrated at the constraint N. For
the soft constraint, we know that the distribution for N(n)
has its mean at the constraint N, by construction. If the
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Figure 1: Comparison between different entropy maximization (EM) predictions for the one-cell abundance distribution: the EM solution (eq.
[11]) for labeled configurations with hard constraint (dash-dotted line), the EM solution (eq. [13]) for labeled configurations with soft constraint
(dotted line), the EM solution (eq. [17]) for unlabeled configurations with hard constraint (dashed line), and the EM solution (eq. [19]) for unlabeled
configurations with soft constraint (dotted line; one-cell abundance distributions P(lab, soft) and P(unl, soft) coincide). Also plotted is the EM solution
computed by Harte et al. (2008; solid line). The panels show these distributions for different values of M and N. A, and ; B,M p 4 N p 10

and ; C, and ; D, and . The solutions for unlabeled configurations are very close for all valuesM p 16 N p 10 M p 4 N p 100 M p 16 N p 100
of M and N and are visually indistinguishable for . The solution for labeled configurations with hard constraint is very different.M p 16

variation around the mean is small, that is, if the soft-
constraint distribution for N(n) is sharply peaked at N,
then the EM solutions for hard and soft constraints are
practically equivalent.

The EM solutions for labeled and unlabeled configu-
rations behave quite differently in this respect. For labeled
configurations, the distribution is geometric(lab, soft)P (n)M, N

(see eq. [14]), with a large variation around the mean N.
This can be verified by computing the coefficient of var-
iation,

N � 1�CV p ,
N

which is greater than 1 for all N and M. The EM distri-
butions P(lab, hard) and P(lab, soft) are therefore quite different.

For unlabeled configurations, the distribution
is a negative binomial (see eq. [20]) and(unl, soft)P (N(n))M, N

sharply peaked at N. Indeed,

N � M�CV p .
NM

In most cases of interest, M and N are large (say, M 1

and ), and the coefficient of variation is much10 N 1 10
less than 1. Hence, the EM distributions P(unl, hard) and
P(unl, soft) can be considered equivalent.

These conclusions are illustrated in figure 1, which com-
pares the one-cell abundance distributions for the four
EM distributions we have analyzed: , ,(lab, hard) (lab, soft)P P

, and . Note that the one-cell abundance(unl, hard) (unl, soft)P P
distributions and are mathematically(lab, soft) (unl, soft)P P
identical; see equations (13) and (19). Formula (17) for
P(unl, hard) is not identical to these, but its curve almost
always coincides with the two soft-constraint solutions.
However, distribution P(lab, hard) has a completely different
one-cell abundance distribution; see equation (11).
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Scale Dependence of EM Solutions

We have shown that several spatial distributions can be
obtained from the EM algorithm with different assump-
tions in the formulation of the EM problem. In this sec-
tion, we consider the scale on which the EM algorithm is
applied. Indeed, the scale of the EM problem, measured
by the number of cells M, requires close scrutiny. We in-
vestigate whether the outcome of an EM computation de-
pends on the scale on which the problem was formulated.
This is particularly important when combining EM dis-
tributions on different scales, for example, to compute
species-area relationships (Harte et al. 2008). Distributions
on different scales should be combined only if they are
consistent. We demonstrate that this condition is not nec-
essarily satisfied by EM distributions.

For a region of fixed size, the number of cells into which
the region is partitioned determines the scale of the prob-
lem. The larger the number of cells, the finer the scale.
We consider two different scales, M1 and M2, and we as-
sume that M1 is the finer scale and is related to the coarser
scale M2 by an integer factor . In other words,� p M /M1 2

a cell on scale M2 consists of � cells on scale M1.
We introduce a scale transformation from the fine scale

M1 to the coarse scale M2. For any configuration on scale
M1, there is a corresponding configuration on scale M2.
However, there are several configurations on scale M2 that
correspond to a given configuration on scale M1. To find
the probability of a configuration on scale M2, we sum the
probabilities of all configurations on scale M1 compatible
with the configuration on scale M2.

To illustrate the scale transformation, consider unla-
beled configurations with individuals. The fineN p 2
scale has cells; the coarse scale has cells.M p 4 M p 21 2

The scale transformation regroups the first two cells on
scale in the first cell on scale , and theM p 4 M p 21 2

last two cells on scale in the second cell on scaleM p 41

. This leads to the following correspondence:M p 41

(2, 0, 0, 0) (1, 1, 0, 0) (0, 2, 0, 0)\
(2, 0)

(0, 0, 0, 2) (0, 0, 1, 1) (0, 0, 2, 0)\
(0, 2)

(1, 0, 1, 0) (0, 1, 1, 0) (1, 0, 0, 1) (0, 1, 0, 1).\
(1, 1)

Scale consistency can then be defined as follows. Apply
the EM algorithm on fine scale M1, and use the scale
transformation from M1 to M2 to obtain a spatial distri-
bution on coarse scale M2. If the latter distribution cor-

responds to the distribution obtained by applying the EM
algorithm directly on scale M2 then the EM distributions
are called “scale consistent.”

In appendix C, we show that for EM problems stated
in terms of labeled configurations, the resulting spatial
abundance distributions are scale consistent. However, for
EM problems stated in terms of unlabeled configurations,
the distributions are not scale consistent. As a conse-
quence, a new set of EM distributions can be obtained by,
first, applying the EM procedure for unlabeled configu-
rations on scale M1 and, second, computing averages of
the EM solution to obtain a consistent probability distri-
bution for configurations on a coarser scale M2. We again
distinguish hard and soft constraints for the number of
individuals.

Averaged Solution for Unlabeled Configurations
with Hard Constraint

The EM problem with averaging and hard constraint is
solved in appendix C. The resulting distribution for un-
labeled configurations n is (see eq. [C2])

M
N � �M � 1 n � � � 1(avg, hard) mP (n) p 1 , (22)�ZM, N, � [ ( )] ( )N nmp1 m

where P (avg, hard) denotes the probability distribution that
results (on scale M) from applying the EM procedure (on
scale �M) with averaging (scale factor �) and hard
constraint.

The multicell abundance distribution (22) has been used
previously to model spatial abundance distribution (Con-
lisk et al. 2007). It arises from the so-called single-division
(SD) model based on certain colonization rules of indi-
viduals into cells. On a more abstract level, it is related to
the Pólya-Eggenberger urn scheme (Johnson et al. 1997).
Distribution (22) has the marginal one-cell abundance dis-
tribution

(avg, hard)P (n ) pM, N, � 1

n � � � 1 N � n � �M � � � 1 N � �M � 11 1 ,Z[( )( )] ( )n N � n N1 1

(23)

which is a negative hypergeometric distribution.
Note that EM distributions P(lab, hard), P(lab, soft), P(unl, hard),

and P(unl, soft) are uniquely determined by the number of
individuals N and the number of cells M. In contrast, the
distribution P(avg, hard) has one additional parameter,
namely, the factor � of the scale transformation.
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Averaged Solution for Unlabeled Configurations
with Soft Constraint

The EM problem with averaging and soft constraint is
solved in appendix C. The resulting distribution for un-
labeled configurations n is (see eq. [C4])

� nmM
�M Nn � � � 1(avg, soft) mP (n) p ,�M, N, � ( )( ) ( )nmp1 N � �M N � �Mm

(24)

where P(avg, soft) denotes the probability distribution that
results (on scale M) from applying the EM procedure (on
scale �M) with averaging (scale factor �), and with soft
constraint.

The multicell abundance distribution (24) has a simple
structure: cell abundances are independent, and all have
the same one-cell abundance distribution,

� n1

�M Nn � � � 1(avg, soft) 1P (n ) p , (25)M, N, � 1 ( )( ) ( )n N � �M N � �M1

which is a negative binomial distribution. The link with
the hard-constraint solution (22) can be made by con-
ditioning on the total number of individuals,

(avg, soft) (avg, hard)P (nFN(n) p K) p P (n). (26)M, N, � M, K, �

Hence, the SD model, given by equation (22), can be
interpreted as a product of negative binomial distributions
conditioned on the total number of individuals (Conlisk
et al. 2007).

Link between Averaged Solutions with
Hard and Soft Constraints

Using an argument analogous to that for unlabeled con-
figurations, one can show that the averaged EM solutions
with hard and soft constraints are practically equivalent.
First, we note that distributions (22) and (24) have the
same distribution, conditional on the number of individ-
uals; see equation (26). Second, the soft-constraint distri-
bution for the number of individuals is sharply peaked at
the constraint N. Indeed, the coefficient of variation,

N � �M�CV p ,
N�M

is much less than 1 if �M and N are large, a condition
that is satisfied in most cases of interest.

Link between Solution for Labeled Configurations and
Averaged Solution for Unlabeled Configurations

The averaged EM solutions are constructed from the so-
lution of the EM problems with unlabeled configurations.
One can verify that EM distributions P(unl, hard) and P(unl, soft)

are recovered from P(avg, hard) and P (avg, soft) by setting .� p 1
Here we establish a link between the averaged EM solutions
and the solution of the EM problems with labeled
configurations.

To do so, we consider the limit . It is shown in� r �
appendix C that (see eq. [C7])

(avg, hard) (lab, hard)lim P (n) p P (n).�r� M, N, � M, N

However, we also find that (see eq. [C8]),

(avg, soft) (lab, soft)lim P (n) ( P (n).�r� M, N, � M, N

The reason for this asymmetry is that the distributions are
the same, depending on the number of individuals (see
eq. [C10]), but their distribution for the number of in-
dividuals is different. For the first, , the(avg, soft)lim P�r� M, N, �

number of individuals has a Poisson distribution (eq.
[C9]); for the second, , the number of individ-(lab, soft)P (n)M, N

uals has a geometric distribution (eq. [13]).
We conclude that the family of averaged EM distributions

( and ), parameterized by the scale(avg, hard) (avg, soft)P (n) P (n)M, N, � M, N, �

factor �, comprises many of the other EM solutions. For
, we recover the EM solution for labeled configura-� p 1

tions with both hard and soft constraints. For , we� r �
recover the EM solution for unlabeled configurations with
hard constraint but not that with soft constraint. For in-
termediate values of �, we find interpolating spatial abun-
dance distributions; see figure 2.

Discussion

Entropy maximization (EM) is a mathematical framework
that can be used to infer a probability distribution on the
set of system configurations, given partial information
about the system configuration. Several EM applications
in ecology can be imagined and have been studied recently.
Here we studied the EM problem for spatial abundance
distributions. More precisely, we considered a region di-
vided into a number of cells and derived probability dis-
tributions for the arrangement of individuals over the cells
without taking into account the spatial location of cells.

We showed that an EM problem formulation requires
several assumptions or choices and that the outcome of
the EM algorithm depends strongly on these choices. There
is not a unique EM prediction for the spatial abundance
distribution. On the contrary, we obtained a variety of EM
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Figure 2: One-cell abundance distributions for different entropy max-
imization solutions with hard constraint. We consider a species with

individuals and a spatial domain with cells. The dis-N p 300 M p 10
tribution P (avg, hard) is plotted for different scale factors: , 2, 4, 10,� p 1
and 40 and . Note that P (avg, hard) with corresponds to� r � � p 1
P(lab, hard) and that P (avg, hard) for corresponds to P (lab, hard).� r �

predictions, depending on what might look like details in
the EM problem: do we formulate the EM problem in
terms of labeled or unlabeled configurations; what prior
distribution do we assume; do we impose the number of
individuals as a hard or a soft constraint; and on what
scale is the EM problem formulated?

The fact that EM allows for a wide range of spatial abun-
dance distributions should not come as a surprise. The EM
procedure is an inference technique that depends crucially
on the information used in the inference. This information
is contained not only in the constraints but also in the way
we define system configurations and in the prior distribu-
tion over the configurations. Our study indicates that these
implicit assumptions should be made explicit in any ap-
plication of EM procedure, because they can radically
change the predicted probability distributions.

An analogous situation exists in physics. Consider a sys-
tem of N noninteracting particles, each occupying one of
M energy levels. This physical system is comparable to our
ecological example of distributing N individuals over M
spatial cells. Labeled (distinguishable) particles give rise to
the classical Maxwell-Boltzmann (MB) distribution,
whereas unlabeled (indistinguishable) particles give rise to
the quantum mechanical Bose-Einstein (BE) distribution.
A third distribution exists, the Fermi-Dirac (FD) distribu-
tion, which is also quantum mechanical but has the addi-
tional constraint that no more than one particle can be in
any one state. In our ecological example, this would mean
that one cell cannot contain more than one individual. It
is well known that a coarse-grained description of both BE

and FD distributions (i.e., by taking together many quantum
mechanical energy levels) tends toward the MB distribution.
Similarly, our EM solution for unlabeled species at scale M1

averaged at scale M2 becomes the EM solution for labeled
individuals when (fig. 1).M r �1

The equivalence of the EM solutions with hard and soft
constraints is a property that is generally satisfied in sta-
tistical mechanics (except in phase transitions). The lack
of equivalence between P(lab, hard) and P(lab, soft) seems to be
pathological and related to a similar problem in statistical
mechanics for classical systems. To fix this problem, one
must introduce an appropriate prior distribution, the so-
called Boltzmann counting. In appendix D, we present an
alternative computation for the EM problem in terms of
labeled configurations, using as a prior distribution the
analog of Boltzmann counting. This yields distributions,
P(lab, alt, hard) and P(lab, alt, soft), that are practically equivalent.
If we accept the replacement of the pathological distri-
bution P(lab, soft) with P(lab, alt, soft), then all EM distributions
derived in this article are part of the family of averaged
EM distributions P(avg, hard) and P(avg, soft).

Harte et al. (2008)’s EM application for spatial abun-
dance distributions is different from ours. Their EM prob-
lem is written directly in terms of one-cell abundance
distributions: their system configuration is simply the
abundance in a single cell. They implicitly assume a prior
that assigns equal probability to each abundance. Their
constraints are (1) that the number of individuals in a cell
is smaller than the total number of individuals N in the
entire region (a hard constraint because it rules out any
configuration with abundance greater than N) and (2) that
the mean number of individuals in a cell equals (aN/M
soft constraint). The solution for the one-cell abundance
distribution is different from but close to our solutions
P(lab, soft), P(unl, hard), and P(unl, soft); see figure 1. One may
wonder what multicell abundance distribution underlies
the one-cell abundance distribution of Harte et al. (2008).
In appendix E, we solve the EM problem for the multicell
abundance distribution under their constraints 1 and 2,
and we show that the corresponding one-cell abundance
distribution is identical to that of Harte et al. (2008) but
not scale consistent. However, this does not mean that
Harte et al. (2008)’s one-cell abundance cannot be em-
bedded in a scale-consistent multicell abundance distri-
bution. Marginal probability distributions do not, in
general, completely determine the joint probability distri-
butions, so it is possible that a scale-consistent multicell
abundance distribution exists that yields the same one-cell
abundance distribution. The unlabeled configurations that
we have studied are all invariant under permutations of
the cells, thanks to the fact that spatial location is not
taken into account. A multicell abundance distribution
that is permutation invariant and scale consistent and has
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Harte et al. (2008)’s one-cell abundance distribution does
not seem to exist. One must incorporate space to find such
a distribution. How such a scale-consistent multicell abun-
dance distribution should result from a properly formu-
lated spatial EM problem remains an open problem.

Note that the discussion of multicell versus one-cell
abundance distribution has an analogy in neutral theory’s
predictions for species abundance distributions (Chave et
al. 2006), where sampling formulas have been derived that
are multispecies abundance distributions (Etienne 2005,
2007), in contrast to one-species abundance distributions
(Volkov et al. 2003). Sampling formulas are required for
a detailed comparison between theory and observation,
because there may be several sampling formulas that are
compatible with a single one-species abundance distri-
bution (Chave et al. 2006). Here we have also seen that
the same one-cell abundance distribution can correspond
to several multicell abundance distributions: compare the
joint distributions (18) and (12), which give rise to the
identical marginals (19) and (13). Given the central role
of data comparison in the EM modeling approach, mul-
ticell abundance distributions are therefore required for
more powerful EM applications.

It is remarkable that the simple EM applications we have
considered yield spatial abundance distributions that have
been obtained previously by studying more detailed and
often dynamical mechanistic models. We encountered the
RP model as the solution of the EM problem with labeled
configurations and hard constraint. The DBS model was
found as the solution of the EM problem with unlabeled
configurations and soft constraint, while scale transform-
ing the latter distribution yields the SD model. The fact
that these distributions can be obtained from simple EM
applications might indicate a certain robustness. For ex-
ample, one can expect that a (weakly) perturbed mecha-
nistic model would lead to the same EM distribution.

In fact, even more previously studied spatial abundance
distributions can be written as EM solutions. For example,
the model based on the hypothesis of equal allocation
probabilities (HEAP; Harte et al. 2005) is related to the
unlabeled-configurations solution P(unl, hard). We have
shown that this distribution is not scale consistent, which
naturally led us to the averaged distribution P(avg, hard). Sim-
ilarly, the HEAP model can be interpreted as an iterative
averaging approach, applying a scale factor in every� p 2
iteration step. We remark that this iterative approach is
not equivalent to the one-step scale transformation on
which our distribution P(avg, hard) is based.

This suggests that almost any reasonable spatial abun-
dance distribution can be written as the solution of an EM
problem. The choice of assumptions in the EM problem
formulation is indeed wide. One could consider other ways
to define system configurations (different from labeled and

unlabeled configurations), one could work with infor-
mative prior distributions, or other consistency require-
ments could be imposed. We believe that the present un-
derstanding of the problem of allocating individuals to
spatial cells does not allow us to decide which EM problem
formulation is most appropriate. This should caution ecol-
ogists that applying the EM method does not automatically
yield useful results; the accuracy of EM predictions can be
determined only by comparison with empirical data.

This illustrates both a strength and a weakness of the
EM procedure. Entropy maximization applications are
based on a minimal number of assumptions (e.g., labeled
or unlabeled individuals, scale consistency), yielding an
efficient formalism to generate predictions that can be
compared with empirical data. However, the EM problem
formulation does not directly establish a link with an un-
derlying mechanistic model. In fact, different process-
based models will typically yield similar ecological pat-
terns. Although translating ecological processes into an EM
problem formulation (i.e., a set of configurations, a prior
distribution, and constraints) can be a nontrivial problem,
the EM procedure might develop into a valuable tool to
extract from a detailed mechanistic model a minimal set
of assumptions that determine the model predictions.

We considered only a subproblem of the spatial distri-
bution of a species in an ecological community. First, we
considered only one species at a time, neglecting the effects
of other species and their spatial distribution. Second, we
considered only the abundance distribution over cells,
without taking into account the spatial location of these
cells. Stronger correlations can be expected with abun-
dance distributions for nearby cells than with those for
distant cells (see Maddux 2004 and Ostling et al. 2004 for
a consistency problem related to the spatial structure). In
turn, this might influence the predicted species abundance
distribution. Whether the EM approach can be usefully
applied for several species at once and/or for spatially
structured communities is an interesting set of topics for
future research.
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APPENDIX A

EM for Labeled Configurations

We apply the EM algorithm under the assumption that
labeled configurations m are a priori equally probable. We
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maximize entropy subject to a constraint on the total num-
ber of individuals. There are two ways to impose this
constraint.

Hard Constraint on N

The first possibility is to restrict the set of configurations
to vectors m with the exact number of individuals N,

N(m) p N. (A1)

There are no further constraints to impose, so the EM
computation is trivial. Configurations m with N(m) (

have zero probability; configurations m withN N(m) p
all have equal probability. As there are MN such con-N

figurations, the EM distribution is

1
(lab, hard)P (m) p (A2)M, N NM

if , where P(lab, hard) denotes the probability dis-N(m) p N
tribution that results from applying the EM procedure for
labeled configurations with “hard” constraint (A1). The
probability distribution for labeled configurations m can
be transformed into a probability distribution for unla-
beled configurations n by using the multiplicity factor (eq.
[3]):

1 1N(lab, hard)P (n) p M(n) p (A3)M, N N N( )nM M

if , which is a multinomial distribution.N(n) p N

Soft Constraint on N

The second possibility is to take all configurations m into
account, thus including vectors m for which .N(m) ( N
We require that the mean number of individuals equals
N,

P(m)N(m) p N. (A4)�
m

We use the technique of Lagrange multipliers to solve
the EM problem. We denote the Lagrange multiplier for
constraint (A4) a. The EM solution reads

1
(lab, soft) �aN(m)P (m) p e ,M, N Z

where P(lab, soft) denotes the probability distribution that
results from applying the EM procedure for labeled con-

figurations with “soft” constraint (30). The normalization
constant Z can be calculated as follows:

�
1

�aN(m) n �anZ p e p M e p .� � �a1 � Mem np0

Imposing constraint (A4) yields

�a� Me
N p � ln Z p ,

�a�a 1 � Me

and we can solve for the Lagrange multiplier a,

M(N � 1)
a p ln .

N

As a result,

N(m)

1 N
(lab, soft)P (m) p , (A5)M, N [ ]N � 1 M(N � 1)

which gives the distribution for labeled configurations,

N(n)

1 NN(n)(lab, soft)P (n) p . (A6)M, N ( ) [ ]n N � 1 M(N � 1)

APPENDIX B

EM for Unlabeled Configurations

We apply the EM algorithm under the assumption that
unlabeled configurations n are a priori equally probable.
We maximize entropy subject to the constraints on the
total number of individuals. There are two ways to deal
with this constraint.

Hard Constraint on N

The hard constraint restricts the set of configurations to
vectors n with the exact number of individuals N,

N(n) p N. (B1)

There are no further constraints to impose, so the EM
computation is trivial. Configurations n with N(n) ( N
have zero probability; configurations n with allN(n) p N
have equal probability. It is a standard result in combi-
natorics that there are
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N � M � 1( )N

configurations of the latter type. Hence,

N � M � 1(unl, hard)P (n) p 1 (B2)ZM, N ( )N

if , where P (unl, hard) denotes the probability dis-N(n) p N
tribution that results from applying the EM procedure for
unlabeled configurations with hard constraint (B1). From
equation (16) we compute the one-cell abundance distri-
bution,

N � n � M � 2 N � M � 1(unl, hard) 1P (n ) p (B3)ZM, N 1 ( ) ( )N � n N1

for , because there aren ≤ N1

N � n � M � 21( )N � n1

configurations that have n1 individuals in one particular
cell and in the remaining cells.N � n M � 11

Soft Constraint on N

The soft constraint takes all configurations n into account
and requires that the mean number of individuals equals
N,

P(n)N(n) p N. (B4)�
n

We use the technique of Lagrange multipliers to solve the
EM problem. We denote the Lagrange multiplier for con-
straint (B4) a. The EM solution reads

1
(unl, soft) �aN(n)P (n) p e ,M, N Z

where P (unl, soft) denotes the probability distribution that
results from applying the EM procedure for unlabeled con-
figurations with soft constraint (B4). The normalization
constant Z can be calculated as follows:

�
1n � M � 1�aN(n) �anZ p e p e p .� � �a M( )n (1 � e )n np0

Imposing constraint (B4) yields

�a� e
N p � ln Z p M ,

�a�a 1 � e

and we can solve for the Lagrange multiplier a,

M
a p ln 1 � .( )N

As a result,

M N(n)

M N
(unl, soft)P (n) pM, N ( ) ( )N � M N � M

nmM
M N

p . (B5)� ( )( )mp1 N � M N � M

APPENDIX C

Scale-Transformed EM Distributions

In this appendix, we investigate how the EM solutions for labeled and unlabeled configurations change under scale
transformation. This transformation maps an abundance distribution on M1 cells to a distribution on a coarser scale
with M2 cells, . The scales M1 and M2 are related by an integer scale factor .M ! M � p M /M2 1 1 2

EM for Labeled Configurations

Consider the distribution on the fine scale M1. It corresponds to randomly allocating N individuals to M1
(lab, hard)PM , N1

cells, each cell having probability of receiving an individual. To scale transform this distribution, we have to take1/M1

� cells together, so that individuals are now randomly allocated to regrouped cells, each regrouped cellM /� p M1 2

having probability . This is the distribution on the coarse scale M2.
(lab, hard)�/M p 1/M P1 2 M , N2

This result can be used to scale transform the distribution . The latter distribution can be written as a(lab, soft)PM , N1

combination of for different K. As we have shown above, each of these components is scale transformed to(lab, hard)PM , K1
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. Moreover, the coefficients of this combination, given by equation (14), do not depend on the scale M1 or(lab, hard)PM , K2

M2. Hence, the scale transformation of is a combination of for different K, with coefficients also given(lab, soft) (lab, hard)P PM , N M , K1 2

by equation (14). This leads to the distribution on scale M2.
(lab, soft)PM , N2

EM for Unlabeled Configurations

Consider first the distribution on the fine scale M1. It attributes the same probability to all unlabeled con-(unl, hard)PM , N1

figurations. Hence, the scale-transformed (on the coarse scale M2) probability for a configuration n is proportional to
the number of configurations on scale M2 that are compatible with n. This number is given by

M2

n � � � 1mS(n) p , (C1)� ( )nmp1 m

because there are

n � � � 1( )n

configurations that satisfy the condition . The probability distribution on scale M2 follows directly from
�� n p niip1

the multiplicity factor (C1),

N � M � 1(avg, hard) 1P (n) p 1 S(n)ZM , N, �2 [ ( )]N

M2

N � �M � 1 n � � � 12 mp 1 , (C2)�Z[ ( )] ( )N nmp1 m

where P (avg, hard) denotes the probability distribution that results from (1) applying the EM procedure for unlabeled
configurations with hard constraint (B1) on a fine scale and (2) scale transforming the EM solution to a coarser scale.

Next, we compute the scale transformation of the distribution . This multicell abundance distribution equals(unl, soft)PM , N1

the product of M1 independent one-cell (on scale M1) abundance distributions (19). The scale transformation consists
of regrouping cells on scale M1 into one cell on scale M2. Hence, the scale-transformed multicell abundance distribution
equals the product of M2 independent one-cell (on scale M2) abundance distributions. Each factor in this product is
given by the convolution of abundance distributions (eq. [19]), leading to a negative binomial distribution,

� n1

M Nn � � � 1 1(avg, soft) 1P (n ) pM , N, � 12 ( )( ) ( )n N � M N � M1 1 1

� n1

�M Nn � � � 1 21p . (C3)( )( ) ( )n N � �M N � �M1 2 2

For the multicell abundance distribution, we obtain

� nmM2 �M Nn � � � 1 2(avg, soft) mP (n) p . (C4)�M , N, �2 ( )( ) ( )nmp1 N � �M N � �Mm 2 2

Our analysis here is concerned with scaling up from a fine scale M1 to a coarse scale M2, corresponding to integer
scale factors . The opposite is equally possible: scaling down from a coarse scale M1 to a fine scale M2,� p 2, 3, …
corresponding to scale factors
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1 1
� p , , … .

2 3

This case requires a generalization of previous formulas for noninteger �. Equation (C2) for the hard constraint
becomes

M2N !G(�M ) G(n � �)2 m(avg, hard)P (n) p . (C5)�M , N, �2 G(N � �M ) mp1 n !G(�)2 m

Equation (C4) for the soft constraint becomes

� nmM2
G(n � �) �M Nm 2(avg, soft)P (n) p . (C6)�M , N, �2 ( ) ( )

mp1 n !G(�) N � �M N � �Mm 2 2

Link between Averaged and Labeled Configurations Solution

We compute the limit for the averaged distributions and . With the hard constraint,(avg, hard) (avg, soft)� r � P PM, N, � M, N, �

M
N !(�M � 1)! (n � � � 1)!m(avg, hard)lim P (n) p lim ��r� M, N, � �r� (N � �M � 1)! mp1 n !(� � 1)!m

M
(�M � 1)! (n � � � 1)!N mp lim ��r�( )n (N � �M � 1)! mp1 (� � 1)!

M
1N nmp lim � (C7)��r� N( )n (�M) mp1

1N
p

N( )n M

(lab, hard)p P (n).M, N

With the soft constraint,

� nmM
(n � � � 1)! �M Nm(avg, soft)lim P (n) p lim ��r� M, N, � �r� ( ) ( )

mp1 n !(� � 1)! N � �M N � �Mm

� nmM
1 �M NN(n) nmp lim ���r�( ) ( ) ( )n N(n)! mp1 N � �M �M

N(n) �M

1 N �MN(n)
p lim (C8)�r�( ) ( ) ( )n N(n)! M N � �M

N(n) �M

1 N NN(n)
p lim 1 ��r�( ) ( ) ( )n N(n)! M �M

N(n)

1 NN(n) �Np e .( ) ( )n N(n)! M

This can be interpreted as the combination of a Poisson distribution for the number of individuals,
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N(n)N
(avg, soft) �Nlim P (N(n)) p e , (C9)�r� M, N, � N(n)!

and the distribution for the vector n conditional on the number of individuals,

(avg, soft) (avg, hard)lim P (nFN(n) p K) p lim P (n)�r� M, N, � �r� M, K, �

(lab, hard)p P (n). (C10)M, K

APPENDIX D

Alternative EM for Labeled Configurations

We reconsider the EM problem for labeled configurations. Instead of assuming that all vectors m are a priori equally
probable, we assume that the prior probability of a vector m is proportional to . This implies that vectors with1/N(m)!
the same number of individuals are a priori equally probable but that vectors m with a large number of individuals
are a priori less probable than vectors m with a smaller number of individuals.

The EM procedure with the latter prior distribution and hard constraint (A1) is identical to the computation leading
to (eqq. [A2], [A3]). We consider here the EM problem with soft constraint (A4). Using the Lagrange multiplier(lab, hard)PM, N

a,

1 1
(lab, alt, soft) �aN(m)P (m) p e ,M, N Z N(m)!

where P(lab, alt, soft) denotes the probability distribution that results from applying the EM procedure for labeled config-
urations with alternative prior distribution and soft constraint (A4). The normalization constant Z can be1/N(m)!
calculated as follows:

�
1 1

�aN(m) n �an �aZ p e p M e p exp (Me ).� �
N(m)! n!m np0

Imposing constraint (A4) yields

�
�aN p � ln Z p Me ,

�a

and we can solve for the Lagrange multiplier a,

M
a p ln .

N

As a result,

N(m)

1 N
(lab, alt, soft) �NP (m) p e , (D1)M, N ( )N(m)! M

which gives the multicell abundance distribution

N(m)

1 NN(n)(lab, alt, soft) �NP (n) p e . (D2)M, N ( ) ( )n N(m)! M
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This is exactly distribution (C8): a Poisson distribution for the number of individuals and distribution (lab, hard)PM, N

conditional on the number of individuals. As the Poisson distribution has coefficient of variation , hard1/2CV p 1/N
and soft constraints are equivalent if N is large.

APPENDIX E

Harte et al. (2008)’s EM Problem

We construct an EM problem for the multicell abundance distribution that generalizes Harte et al. (2008)’s EM problem
for the one-cell abundance distribution. The EM problem is formulated in terms of unlabeled configurations n and
imposes both a hard and a soft constraint on the number of individuals N. The hard constraint restricts the set of
configurations: a configuration n with one or more of its components has zero probability. The soft constraintn 1 Nm

states that averaged over the remaining configurations, the mean number of individuals equals N; see equation (B4).
This EM problem can be solved with the technique of Lagrange multipliers. With the Lagrange multiplier for the

soft constraint (B4) denoted a, the EM solution reads

1
(unl, hard/soft) �aN(n)P (n) p e ,M, N Z

where P(unl, hard/soft) denotes the probability distribution that results from applying the EM procedure for unlabeled
configurations with both hard and soft constraints. The normalization constant Z can be calculated as follows:

M
M

N �a(N�1)1 � e
�aN(n) �anZ p e p e p .� � �a( )( ) 1 � en np0

Imposing constraint (B4) yields

�a �Na �(N�1)a� e 1 � (N � 1)e � Ne
N p � ln Z p M .

�a �(N�1)a�a 1 � e 1 � e

This equation can be solved numerically for the Lagrange multiplier. This is the same equation that Harte et al.
(2008) solve to obtain their Lagrange multiplier (see their eq. [B-5]). As a result,

M
�a1 � e

(unl, hard/soft) �aN(n)P (n) p eM, N �a(N�1)( )1 � e

M �a1 � e
�anmp e . (E1)� �a(N�1)( )

mp1 1 � e

This is a product of one-cell abundance distributions, each of which is given by

�a1 � e
(unl, hard/soft) �an1P (n ) p e (E2)M, N 1 �a(N�1)1 � e

for .n ≤ N1

This is exactly the one-cell abundance distribution obtained by Harte et al. (2008; see their eq. [9]). Therefore, our
EM problem embeds the one-cell abundance distribution of Harte et al. (2008) in a multicell abundance distribution.

The EM distribution (E1) is not scale consistent. To see this, consider first the distribution (E1) on the fine scale
M1. Configurations n with all components have a nonzero probability. We scale transform this distribution ton ≤ Nm

the coarse scale M2 (scale factor �). The resulting distribution assigns a nonzero probability to configurations n with
all components . Next, consider the distribution (E1) obtained by applying EM directly on the coarse scalen ≤ �Nm

M2. This distribution has only nonzero probability configurations n with all components . Hence, the scale-n ≤ Nm

transformed EM distribution and the direct EM distribution are different, and so scale consistency is not satisfied.
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