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Self-consistent approach for neutral community models with speciation

Bart Haegeman*

INRIA Research Team MERE, UMR Systems Analysis and Biometrics, 2 Place Pierre Viala, F-34060 Montpellier, France

Rampal S. Etienne

Community and Conservation Ecology Group, Centre for Ecological and Evolutionary Studies, University of Groningen, P.O. Box 14,

9750 AA Haren, The Netherlands
(Received 2 September 2009; published 11 March 2010)

Hubbell’s neutral model provides a rich theoretical framework to study ecological communities. By incor-
porating both ecological and evolutionary time scales, it allows us to investigate how communities are shaped
by speciation processes. The speciation model in the basic neutral model is particularly simple, describing
speciation as a point-mutation event in a birth of a single individual. The stationary species abundance distri-
bution of the basic model, which can be solved exactly, fits empirical data of distributions of species’ abun-
dances surprisingly well. More realistic speciation models have been proposed such as the random-fission
model in which new species appear by splitting up existing species. However, no analytical solution is avail-
able for these models, impeding quantitative comparison with data. Here, we present a self-consistent approxi-
mation method for neutral community models with various speciation modes, including random fission. We
derive explicit formulas for the stationary species abundance distribution, which agree very well with simula-
tions. We expect that our approximation method will be useful to study other speciation processes in neutral

community models as well.
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I. INTRODUCTION

Neutral community theory assumes that all species in an
ecological community have the same ecological function (the
neutrality assumption) and explains community diversity as a
stochastic balance between species origination and species
extinction rather than the result of niche assembly where
each species specializes to occupy a unique niche in resource
utilization [1-4]. Species extinction is due the stochastic
fluctuations of birth-death processes governing the abun-
dance dynamics of the species. Species origination is due to
formation of new species (speciation) or immigration. Note
that speciation in the context of neutral community models
has a rather restricted meaning, because new species still
have the same function as existing species, even though they
can be morphologically different. In Hubbell’s most used
neutral community model [3,4] these two mechanisms are
treated on two different scales: speciation occurs at the large
regional scale, while at the small local scale there is immi-
gration from the regional community. Speciation and immi-
gration processes thus counterbalance species extinctions in
the regional and local communities, respectively.

In the first years after its launch in 2001 [2], neutral com-
munity theory was heavily criticized for its seemingly outra-
geous neutrality assumption (e.g., [5-10]) which stands in
sharp contrast to classical niche theory in which all species
are functionally different. Indeed, one might argue that a
neutrality theory of biodiversity is a contradictio in termines,
because it assumes that there is no functional diversity. Neu-
tral theory allows for morphological diversity and genetic
diversity, however, and is usually restricted to communities
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of a single functional group on the same trophic level, such
as corals or tropical forests [11]; not even the strongest sup-
porter of neutral theory would assume functional equivalence
of predators and prey, or plants and pollinators. Seen in this
light, functional groups could be defined by neutral theory: it
is an assembly of species that matches predictions of neutral
theory well. Neutral theory, then, is a potential solution to the
paradox of the plankton [4,12] or, in this context, more ap-
propriately called the paradox of the tropical forest: the
amazingly high tree diversity on a small plot of tropical for-
est requires an unlikely large number of niches. Alterna-
tively, neutrality could have arisen as an emergent conse-
quence of community evolution [13—15]. Most neutralists,
however, do not advocate this restricted form of neutrality:
they only view neutrality as a first approximation to reality,
similar to ideal gas theory in physics [3]: much of the ob-
served patterns in nature can already be explained by simple
rules that do not depend on differences between species. It is
therefore a natural starting point, a null model, of community
structure. Observed deviations from the predictions of neu-
tral theory are not so much regarded as rejecting the theory,
but as the interesting patterns that require an ecological ex-
planation. To this end, neutral theory must mature first, par-
ticularly in the way that other elements of the theory, such as
speciation and dispersal, are modeled; and more quantitative
predictions need to be derived for the resulting models.
Here, we consider quantitative predictions at the regional
scale, where speciation maintains diversity. Hubbell’s basic
model contains the point-mutation (PM) mode of speciation:
each birth event has a small probability of producing a mu-
tation that leads to an individual of a new species. Chromo-
some doubling is a simple example of this mode of specia-
tion. Point-mutation speciation can be mimicked by
assuming a constant inflow of new species as singletons [16].
Stationary species abundance distribution can be obtained
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exactly for the PM mode of speciation [17,18]. Hubbell also
introduced an alternative model, the random-fission (RF)
mode of speciation in which new species appear by ran-
domly splitting up existing populations. This is a phenom-
enological model of allopatric speciation. No rigorous ana-
Iytical expressions exist for the stationary species abundance
distribution with RF speciation (see [19] for some approxi-
mate formulas based on simulations) or any other speciation
model that is essentially different from the PM model. Here,
we study a general class of neutral community models with
speciation, including the PM and RF modes of speciation,
and derive an excellent approximation for the stationary spe-
cies abundance distribution.

The approximation is based on the fact that the two-scale
model (implicitly) assumes a very large number of individu-
als in the regional community, even though the number of
individuals in the local community can be relatively small
[20]. Hence, we can utilize techniques from statistical me-
chanics to study the properties of regional-scale neutral com-
munities; the thermodynamical limit corresponds to taking
the regional community size to infinity. The correspondence
with statistical mechanics is not straightforward, however,
because the number of species increases as the number of
individuals tends to infinity. Hence, the number of individu-
als in a given species can have a scaling behavior that is
different from the total number of individuals in the commu-
nity. We circumvent this complication by constructing an ap-
proximation scheme that is independent of such scaling rela-
tions.

II. HUBBELL’S NEUTRAL COMMUNITY MODEL

Neutral community theory uses stochastic models to de-
scribe the dynamics of the species composition of an eco-
logical community. We first introduce the state space of these
models and discuss two different descriptions of community
composition. Next, we define Hubbell’s regional-scale com-
munity model by specifying the transition rates on the state
space. For the sake of completeness and comparison, we also
give the transition rates for Hubbell’s local-scale community
model.

A. State space

There are basically two different ways to describe the
species composition of a community. As we will use both
throughout this paper, we introduce them here.

The first description considers species as labeled entities.
Suppose we have a pool of St species (where St may be
infinite; we take this limit later on). Each individual present
in the community belongs to one of these Sy species (some
species in the pool can be absent in the community). We
specify for each of the St species its abundance. Hence, the
labeled species description is given by a vector N with St
components,

N=(N,,N,, ... ,Ng).

T

Component i gives the number of individuals N; that belong
to species i. The number of species S present in the commu-
nity is given by
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St

S=> 8N, =1),

i=1

where S(N;=1)=1 if the condition N;=1 is satisfied and
S8(N;=1)=0, otherwise. The number of individuals N in the
community is given by

St
N=>N..
i=1

The second description considers species as unlabeled en-
tities. Instead of specifying the abundance of each species
individually, we specify the number of species with a given
abundance. Hence, the unlabeled species description is given

by a vector S with N components,

§= (SI’S27 ’SN)'

Component k gives the number of species S, that have k
individuals. The number of species S present in the commu-
nity is given by

S= > 8,=8:-S,,
k=1

where S, denotes the number of species in the pool that are
absent from the community. The number of individuals N in
the community is given by

N= > kS,.
k=1

Local-scale neutral community models can be formulated
using the labeled species description. Indeed, the regional
community fixes the pool of St species that are possibly
present in the local community. Hence, the state of the local
community is fully specified by the abundance of each of the
St species. In Hubbell’s neutral community model the num-
ber of individuals N is considered fixed (as we will discuss
later, we can relax this assumption). The state space of the
local community model is given by

Ny= {1\7|1\7= (N1,Na, ... ,Ng.), E N,:N}, (1)

i.e., we consider all communities N with a given number of
individuals N. For example, if St=2, then

N3={(3.0).(2,1),(1,2),(0,3)}.

In words, there are four labeled species states for three indi-
viduals and two distinct (i.e., labeled) species: the first spe-
cies has three individuals, and the second species has no
individuals [N=(3,0)]; the first species has two individuals,
and the second species has one individual [N=(2,1)]; the
first species has one individual, and the second species has
two individuals [N=(1,2)]; or the first species has no indi-
viduals, and the second species has three individuals
[N=(0,3)].

Regional-scale neutral community models are most con-
veniently described in the unlabeled species description. In-
deed, the speciation process continually introduces new spe-
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cies in the community, so that we cannot specify beforehand
a pool of species that can be present in the community. In
Hubbell’s neutral community model the number of individu-
als N is constant over time. The state space Sy is therefore

={§|§=(sl,sz, S, EkSk=N}, 2)
k

i.e., we consider all communities S with a fixed number of
individuals N. For example,

8;={(3,0,0),(1,1,0),(0,0,1)},

meaning that a community of three individuals is described
by one of three unlabeled species states: all individuals be-
long to different species [§=(3,0,0)]; two individuals be-
long to the same species, and the remaining individual be-
longs to a different species [§ =(1,1,0); or all individuals
belong to the same species [$=(0,0,1)]. Similarly, a com-
munity of four individuals is described by one of five unla-
beled species states,

84 = {(4’0’0’0)’(2’ 1’070)7(072’0’0)’(1’0? 1’0)’(0’030? 1)}'

B. Transition rates for regional community

Hubbell’s regional-scale neutral community models can
be considered as a continuous-time Markovian process on
the state space Sy. We denote the transition rate to go from

state S’ to state S” by R(S’,S"). Specifying the matrix of
transition rates R(§ ! ,5‘”), S8 e Sy, fully defines the com-
munity model. Denoting by P(S(r)=S") the probability that
at time ¢ the process’ state is S’, the master equation [21] is
given by

—P(S(r) §y= 2 [P(S(r)=S")R(S",S")
S”#S’

—P(S() =S8)R(S',S")]. (3)

There are two types of events in the regional community:
death-birth events, with transition rate RP2(S’,S"), and spe-

ciation events, with transition rate RSP(S’,S”). Hence, the
total transition rate is

R(§r’§//) — RDB(§7’§//) + RSP(§’,§/,).

In a death-birth event, first an individual is selected to die
(all N individuals have the same probability to be selected),
and then another individual is selected to reproduce (all re-
maining N—1 individuals have the same probability to be
selected). Note that such an event conserves the number of
individuals N. Assume that the dying individual belongs to a
species with abundance k and that the reproducing individual
belongs to a species with abundance €. Then, the resulting

state S” of a transition RPB(S’,S") is
NERY _gk+5k—l —6_)€+é)(+1,

with ¢, as the kth unit vector. The corresponding transition
rate is
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kS, €S,
NN-1

(4)

RPB(S.S—&+ & -+ &) =pn—r

with u as the community level death-birth rate. We will use
the shorthand notation R (S) for the transition rate (4). Note
that a death-birth event w1th €=k—1 has no net effect in the
unlabeled species description (a species with abundance k
loses an individual and a species with abundance k—1 gains
an individual, so that S; and S,_, are constant).

In a speciation event, first an individual is selected (all N
individuals have the same probability to be selected). The
species the individual belongs to undergoes speciation. As-
sume that this species has abundance k. Then, after the spe-
ciation event, this species has abundance k—¢ and a new
species with € individuals enters the community. To deter-
mine the abundance € of the new species, we sample from a
probability distribution s on the set {1,2,...,k—1}. Note
that such a speciation event conserves the number of indi-
viduals M. Starting from a state S’ the resulting state S is

S”=S,—Ek+é)€+é)k_€,

and the corresponding transition rate is
RP(S.S—é+¢i+¢_) = u7s<k>(f) (5)

with v as the community-level speciation rate. We will use
the shorthand notation R,ffg(é?) for the transition rate (5). Note
that a speciation event with k=1 has no net effect in the
unlabeled species description (a singleton species is replaced
with a new species with one individual, so that S; is con-
stant). Also, in the unlabeled species description an event
Ry "(S) is equivalent to an event R «(S).

We consider two explicit models of the speciation pro-
cess. In the PM mode of speciation, a new species always
consists of a single individual, i.e.,

W(¢)=6,(€¢) for point mutation. (6)
The transition rate of PM speciation events is given by

kS
RPM(SS—ek+ek1+el)—V k

(7)
Alternatively, in the RF mode of speciation, the abundance
of the new species is determined by randomly splitting the
old species into two fragments. All fragment sizes have the
same probability, i.e.,

0 () = 1 for random fission. (8)

The transition rate of RF speciation events is given by
Lo kS, 1

RA(S,S-é+éi+é)=v——, 9
( kteteé)=v N k-1 )

for which we will use the shorthand notation REM(b:).
Hubbell’s basic neutral model combines death-birth
events (4) with PM speciation events (7). This defines an
irreducible Markovian process on the finite state space Sy, so

that there exists a unique stationary distribution on Sy [21].
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Different techniques have been used to obtain this stationary
distribution for any value of N. A straightforward derivation
is based on the detailed-balance condition [22].

Hubbell’s neutral model with RF speciation combines
death-birth events (4) with speciation events (9). Again, we
obtain an irreducible Markovian process with a unique sta-
tionary distribution on Sy. However, the stationary distribu-
tion seems to be difficult to compute analytically; detailed
balance is not satisfied. Some stationary properties of this
model have been studied using numerical simulations [2,19].
In this paper we propose an approximation scheme that
yields excellent results for large N.

C. Transition rates for local community

This paper focuses on Hubbell’s regional community
model. However, our analysis exploits the analogy with the
local community model. Therefore, we give a brief descrip-
tion of Hubbell’s local community model. More details can
be found in [4,23].

As mentioned above, the local community model uses the
labeled species description. Species can be labeled because
the local community is assumed to be coupled to a very large
regional community, the composition of which is constant on
the local time scale (see [20] for a justification of this as-
sumption). The regional community consists of Sy species;
the relative abundance of species i is denoted by p;. These
are positive numbers summing up to 1,

St
EPI: L.
i=1

The local community composition is described by the abun-
dance vector N with St components, corresponding to the St
species of the regional community. Moreover, the number of
individuals N in the local community is constant over time.
There are two types of local events. Local death-birth
events are analogous to regional death-birth events. First an
individual is selected to die, and then another individual is
selected to reproduce. Assuming that the current state is N,
the dying individual belongs to species i, and the reproduc-
ing individual belongs to species j # i, the new state N is

NN — -
N —N —ei+€j,

and the corresponding transition rate is

RPB(N.N-é,+¢) = ”NN——Ll

with # as the total death-birth rate in the local community.

Local immigration events are comparable to regional spe-
ciation events. First an individual from the local community
(suppose it belongs to species i) is selected to die, and then
an individual from the regional community enters the local
community. The probability that the immigrating individual
belongs to the species j is equal to the relative abundance n;.
If the current state is N ', then the new state N is

NN - -
N'=N —ei+€j,

and the corresponding transition rate is
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. N;
RM(N,N-¢;+ é)j) = fﬁll’j,

with { as the total immigration rate from regional to local
community.

The combination of local death-birth events with local
immigration events defines an irreducible Markovian process
on the finite state space Ay. Hence, there exists a unique
stationary distribution. Note that this local community distri-
bution depends on the regional community composition (i.e.,
the relative abundances p;). The local stationary distribution
can be averaged over the regional stationary distribution.
This yields a local community distribution that depends only
on the rate parameters u, v, 7, and ¢ (more precisely, on the
ratios ﬁ and ;{7 of rate parameters). The latter distribution is
the starting point for comparison between theory and obser-
vation; it can be used to infer the likelihood of the neutral
community model given field data [24]. In this paper we deal
with the stationary distribution of the regional community
for a general class of speciation models and illustrate this for
PM and RF; the derivation of the local community distribu-
tion and the comparison with field data for these specific
models have been or will be reported elsewhere [24,25].

III. SELF-CONSISTENT APPROXIMATION

In the previous section we have introduced the neutral
community model by specifying the transition rates (4) and
(5). The neutrality structure is clearly present in these tran-
sition rates: the probability that a given species is selected to
die, reproduce, or speciate is proportional to its abundance
and independent of its identity. Hence, all individuals un-
dergo the different processes with identical rates, indepen-
dent of the species they belong to.

Consequently, when we focus on a particular species i, its
dynamics are completely determined by its own abundance
N; and by the abundance of all other species taken together,
equal to N—N,. Indeed, the only coupling with the other spe-
cies is due to the constant community size constraint (known
as the zero-sum assumption in the ecological literature).
However, this coupling is rather weak as one can expect that,
for large community size N and for large number of species
S, the community size constraint is satisfied (approximately)
just by statistical averaging. This mechanism is analogous to
the equivalence of ensembles in statistical mechanics. Recall
that both N and S are large in the regional community models
we are considering here.

Dropping the community constant size constraint corre-
sponds to decoupling death and birth events. This means
replacing the transitions RE v (S) [see Eq. (4)] with two types
of events:

RB(S,S - &, +&,,,) = kS, for birth events,

RP(S.S—¢,+é,_,)= kS, for death events,

with B and ¢ as the per capita death and birth rates, respec-
tively. One must assume B<< 4 to avoid the community size
N running away to infinity; it is rescued from extinction by
constant immigration.
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For local community models, the decoupling of death and
birth events leads to the decoupling of the dynamics of dif-
ferent species. The resulting independent species model is
particularly simple, because species can be considered sepa-
rately. The stationary distribution can be computed explicitly
and turns out to be identical to the stationary distribution of
the constant community size model, when conditioned on
total community size [23,26].

The situation is more delicate for the regional community
model. Whereas the immigration process in the local com-
munity model is independent of the local community com-
position, the speciation process in the regional community
model does depend on the composition of the regional com-
munity composition. Therefore, decoupling death and birth
events does not lead to an independent species model. More-
over, with variable community size N, the stochastic commu-
nity dynamics get trapped in the absorbing state N=0 (as-
suming that 8< ). Indeed, whereas the immigration process
in the local community model is still active in the state N
=0, the speciation process in the regional community model
gets halted in the state N=0: there are no individuals to spe-
ciate.

We propose the following approach to this problem. Our
goal is to describe speciation (which is an internal process)
as immigration (which is an external process) because this is
much more tractable. We are motivated by simple models in
which the results are identical [23]. Therefore, we first solve
a community model in which new species enter the commu-
nity as immigrants (Sec. IV). We compute the stationary dis-
tribution of this model, a computation similar to the local
community model. Our model is slightly more general, be-
cause we allow for immigration events with several immi-
grants at once. It reduces to an independent species model,
which is most easily solved in a labeled species description.
We obtain a nontrivial stationary distribution, which we then
convert back to the unlabeled species description.

Because speciation is modeled as immigration, the specia-
tion rate, i.e., the rate at which new species enter the com-
munity, is constant over time. Similarly, the abundance of
new species entering the community is taken from a fixed
distribution, which is independent of community composi-
tion. However, as stated earlier, the speciation process (5) in
the regional community model is controlled by the composi-
tion of the community. We approximate this using a self-
consistent approach: we match the species inflow (both in
terms of rate and abundance distribution) with the corre-
sponding stationary community composition (Sec. V). In
other words, we use an appropriately chosen externally con-
trolled species inflow to construct the stationary distribution
for internally controlled species inflow. We show that this
approach yields accurate results for a range of speciation
models.

IV. EXTERNALLY CONTROLLED SPECIES INFLOW

The neutral community model given by transition rates
(4) and (5) describes a rather intricate speciation process, as
species inflow depends on community composition and can
therefore fluctuate in time. In this section we study a simpli-
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fied neutral community model, in which species inflow is
constant over time. The stationary distribution of this simpli-
fied model will be helpful to construct an approximate sta-
tionary distribution of the full community model, as we will
show in the next section.

A. Immigration model

We consider a community model in which three types of
events occur: birth, death, and immigration events. We work
with labeled species, assume a fixed pool of St species, and
allow the community size N to fluctuate, in contrast with
Hubbell’s community model (Sec. II). The state space of the
community model of this section is given by all vectors N
with St components, without restriction on community size.

The dynamics of different species are independent, so it
suffices to consider a single species i. Denote the per capita
birth rate by B, the per capita death rate by &, and the
species-level immigration rate by . We allow for immigra-
tion events with several individuals. When an immigration
event occurs, the probability that k individuals immigrate at
once is given by g,. These are positive numbers summing up
to 1,

> g=1. (10)
k=1
We consider the case for which the immigration rate A is
small, i.e., N<B<4. In fact, we will be interested in the
limit A — 0 (see below).
We consider the continuous-time Markovian process for
the abundance N; of species i. Using the shorthand notation
pu(1)=P(N(r)=k), the master equation is given by

d
Epk(t) =Bk = D)py_y(t) + Sk + 1)py,1 (1) = (B+ O)kp(1)

k

+ er Gepie(D) = \pi(0). (11)
=1

We look for the stationary probabilities that species i has
k individuals. Using the shorthand notation p;
=lim,_.. P(N,(r)=k), the equations are

81 =\ 2 o
k=1

28p2=Bp1+ N2 qupo+ N2 41
k=2 k=1

30p3 =283+ N2 G+ N2 G+ N2 i
k=3 k=2 k=1

We also have the normalization condition

EP/F L.

k=0

Solving these equations in terms of p,, we find
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P1 A

_l=_EQk’

Po =
P2 _ BA A 2
2o 2 i+ OO,
PRET LT LA

P3 BZKE BA A )
Sl s 2 et 2 gt O,
Po 353k21 g 352k22 g 36i=3 ¢

We rewrite this solution as

A
5%+O()\2) for k=1
Pe=) (12)
— for k=0,
Z,
with
& B
0,=2p"2 g,. with p=" (13)
(=1 m={
A
Zi=1+-=> %+O()\2). (14)

51{21 k

By combining the one-species stationary distributions
(12), we get the stationary distribution for the (labeled) com-

munity composition N. Because species are independent, we
have to take the product of the one-species distributions,
. 1
PN ="5

A On.
(—i ¥ 0()&))
Z%in=1

S1=So
_L<§) ( H %>+C’)(AST_SO+1),

=75
Zo\ 6 in=1 Ni

where S, is the number of species in the pool that are absent

from the community composition N. We are interested in the
stationary distribution for unlabeled community composition

S. To obtain this we remove the species labels,

R
' So!kllek! zZo\ 8 i \ k

+ OO\ST—SOH)}

_ S L(b) L(%)Sk
_SO!{ZfO 5 gsk! k

+ O()\ST—SOH)}

s (o)
_So!zfo<5> Ll;[l silx ) TOM |

P(S0,81,S5, ..
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B. Speciation as immigration

We have obtained the stationary distribution of the com-
munity immigration model (for small \). Now we take into
account that we are interested in the immigration process as
a speciation model. Thus, every immigration event intro-
duces a new species into the community. This situation cor-
responds to a species pool with very high diversity, i.e., we
have to take the limit St— . Simultaneously, we keep the
community-level immigration (or speciation) rate v=StA
constant. This implies that for the species-level immigration
rate A we must take the limit A — 0. We get

Sk
PG) = PS8, ) = T - (”Qk>

Zyjmr S\ Sk
1 1 [ poQ, \5
=—H—<p—Q") : (15)
Zyj=1 S\ k
with
o=, Zz=exp(p02 %) (16)
:8 k=1

Equation (15) gives the stationary distribution for exter-
nally controlled species inflow. It has a particularly simple

structure: the components of vector S are mutually indepen-
dent, and the component S; is Poisson distributed with mean

]ESk=p0%. (17)

Therefore, the total number of species S in the community is
also Poisson distributed with mean

Bs= 3 B5,=p0S &
k=1 k=1

so that Z,=exp(kiS) [see Eq. (16)]. The distribution for the
number of individuals N satisfies

EN= > kES,=p6>, O,

k=1 k=1
Var N= >, k* Var S, = p6>, kQ,. (18)
k=1 k=1

C. Community size constraint

The immigration model of this section has a fluctuating
community size N. However, Hubbell’s community model,
given by transition rates (4) and (5), has a fixed community
size N. In Hubbell’s model the number of individuals N is a
parameter, whereas in the immigration model the number of
individuals N is a stochastic variable. Because we will use
the stationary distribution of the immigration model as an
approximation for the stationary distribution of Hubbell’s
model, we have to establish the link between both.

To do so, we choose the parameter p such that the ex-
pected community size EN in the immigration model equals
the community size constraint N of Hubbell’s model. Typi-
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cally, this choice of p effectively imposes the community
size constraint, because the stationary distribution for the
community size N is often sharply peaked, i.e., VVar N
<[EN. Note that this inequality also implies that the state N
=0 has an extremely low stationary probability, so that com-
munity extinction is highly improbable.

Alternatively, we can restrict the stationary distribution
(15) of the immigration model to those states S with appro-
priate community size N, i.e., the community size N imposed
by Hubbell’s model. By conditioning Eq. (15) on N,

11 (paQ")sk. (19)

]P(S N)=
| Z3(N) =1 !\ k&

In the examples we work out in the next sections, the condi-
tioned distribution P(§|N) is independent of p, so that con-
ditioning can be used directly (i.e., without first determining
p) to impose the community size constraint. Obviously, con-
ditioning on N also avoids community extinction.

From Eq. (19) we find that

Zy(N =) pbQ,

E(SN) = ZN & (20)
and, using Eq. (15), that
P(N) = @ (21)
2

The normalization constants Z;(N) can be computed with a
generating function. On one hand we have, using Eq. (21),

EZN = E P(N)ZN = ZL 2 Zy(N)ZY

N=0 2N=0

and on the other hand we have, using Eq. (15),

N = 2 P(S)ZN = Ziexp(pGE =, ) = ZLexp(E IS,z )

k=1 k 2 k=1

Equating these expressions leads to

> Zy(N)ZN = exp( > ESkzk>. (22)

N=0 k=1

To get the normalization constants Z;(N), we have to expand
the right-hand side in powers of z. This expansion can be
computed numerically (if not analytically) with the fast Fou-
rier transform.

V. INTERNALLY CONTROLLED SPECIES INFLOW

In the previous section we computed the stationary distri-
bution (15) of a neutral community model in which new
species arrive with fixed abundance distribution. However, in
the speciation process (5) the inflow of new species is con-
trolled by the current community composition. In this section
we study the feedback of community composition on the
speciation process and propose a self-consistent approxima-
tion scheme to compute the stationary distribution of the
neutral community model with this feedback, expressed in
Egs. (4) and (5).
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Consider a community described by an abundance vector

S with N =28, individuals. Suppose a speciation event oc-
curs. The probability that the speciation happens in a species
of abundance k and yields a new species of abundance ¢ is
given by

kS
Wks“d(e).

Summing this expression over the abundance k of the speci-
ating species, we get the probability g.(S) that, if a new
species appears in the community, it will have abundance ¢,

kS
> Wks“)(@.

k>¢

q€(§) =

If the community is described by a probability distribution
P(S) or P(S |N), the probability vector c](§) is also stochastic.
Its probability distribution has typically little dispersion, so
that g,(S) can be replaced with the expectation g, [expec-
tation with respect to P(S) or P(S |N)]. For a distribution
(S |N) with fixed community size, such as Eq. (19), we
have

. kE(S |N)
Eg,= 2 SEARKTY

k>¢

s©0). (23)

For a distribution P(§) with variable community size, such as
Eq. (15), we have

b= 3 rn 3, 0 - 3 T,

¢ k>t
(24)

The latter approximation assumes the distribution of the
community size N to be sharply peaked, which is typically
the case as we noted earlier. This assumption also implies
that Egs. (23) and (24) yield equivalent results. We prefer to
work with Eq. (24) as it is often easier to compute in prac-
tical examples.

Note that Eq. (24) does not satisfy the normalization con-
dition (10),

KES,
2 kg~ 2 2 ——sWe)= > e E Do)
(=1 o (=1 k>¢ EN k=2 EN o5

s MBS B

To keep the normalization, we simply add the missing term
ES,/EN in component Fgq,. This corresponds to speciation in
a species with a single individual. Note that such a speciation
event has no net effect in terms of (unlabeled) species abun-
dances, as the old species (with one individual) is entirely
replaced with a new species (with one individual). Adding
the missing term, we obtain the computed abundance distri-
bution of immigrating species (denoted with the superscript
cmp),
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-

ES, kES,
emp _ 21 o ®
q¢ I (€) + E N s

N k>e

(). (25)

Now we have all ingredients to formulate the self-
consistency problem. We first assume an abundance distribu-
tion of immigrating species (denoted with the superscript
ass),

"ZlSS ass ass
( 1 b q2 9. ') .
~ass

Using this distribution ¢***, we compute the expected number
of species IS, with abundance k using Egs. (13), (17), and
(18). Equation (25) gives the computed abundance distribu-
tion of immigrating species,
—>cmp — (qcmp Cmp’ .. ') .
The vector §°™ has to be matched with the vector g**° we
started with. The self-consistency problem consists of finding
the abundance distribution ¢**, so that the resulting abun-
dance distribution g"P=g"%.

The self-consistency equations can be written explicitly.
Starting with a vector qa“ we have from Eq. (13),

S g
m={
Hence, from Eq. (17),
Q ass
ESy=p6=" —90—2 AR
k k( 1 m={
and from Eq. (18),
k
EN=p62> 2 o' 2 g
k=1 (=1 m={¢

Substituting the last two equations into Eq. (25),

> Ep" € ¢=sW(n)

cmp 8,(n) k>n (=1 m=¢
n k
SSS e IS g
k=1 €=1 m={ k=1 (=1 m=4{
By interchanging the summations, we get
anS
cmp _ dm
dn 51(’1)( ass) + mz>l "Wl< ass) ’

with (¢**) as the mean abundance of an immigrating species,

(q™) = 2 mgsy,

m=1
A= 25 P = )50 ).
k>n

Therefore, the self-consistency equations read

S Apgn=8(n)(1-p) for all n=1,

m=1

<q>Qn -

or in matrix notation,
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(@)1 -4A)g=(1-p)é,, (26)

with 1 as the identity matrix and &, as the first unit vector.
Equation (26) has to be solved for the vector §=(q;,¢3,...).
Note that Eq. (26) becomes a linear system of equations if
(g) can be considered a constant. This property can be ex-
ploited to solve Eq. (26) numerically if an analytical solution
is not possible.

VI. POINT-MUTATION MODEL

As a first, rather trivial, illustration of our self-consistent
approach, we consider the point-mutation (PM) model. In
this model a speciation event consists of splitting off one
individual from an existing species [see Eq. (6)], so that new
species arrive as single individuals,

qe=6,(£). (27)

Actually, there is no self-consistency problem to solve, be-
cause the distribution ¢ is known beforehand, but the ex-
ample is still illustrative of our approach. We substitute Eq.
(27) in the solution for externally controlled species inflow.
From Eq. (13) we find

Qk = pk_l s
and from Eq. (15) we have

p
P(S
()= Z2,£[1 Sk'ksk

The normalization constant is [see Eq. (16)]

InZ,=62, —=—01n(1—p).
k=1 k

Hence,

P(S)=(1-p)%"[1]

(28)
k=1 Sk

|k5k'

The distribution for the community size N can be obtained
from Eq. (22),

N

Z3(N)=1%(0)N, with (O)y=0(6+ 1)+ (0+N—1),

and from Eq. (21),

POV = (1 - )0(‘% v

(29)
This is a negative binomial distribution.

The PM model we are approximating has fixed commu-
nity size N. As explained above, we can impose this con-
straint by determining p such that [EN equals the community
size constraint N. From Eq. (29),

pb

EN=—,
l_

so that
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N
N+6

p= (30)

Conditioning Eq. (28) on community size we find, using Eq.
(19),

P(SIN) = — H

. 31
(O)ni=1 Si! ks" Gl

This is the so-called Ewens’ distribution [27], which is the
exact stationary distribution of the regional community
model with point mutation, i.e., with transition rates (4) and
(7). Note that Eq. (31) does not depend on p, so that impos-
ing Eq. (30) is superfluous.

In terms of the parameters w, v, and N of the PM model,
the parameter # appearing in the exact solution (31) is

B (N-1)
_—M .

(32)

This equation allows us to establish the link with the param-
eters 3, 6, and v of the immigration model. For large com-
munity size N, we know from Eq. (30) that p~ 1. Because

p=L 5 0_ , and from Eq. (32), we get
N
sz—, B= 6~E for large N. (33)
)7

Recall that w is the community-level death-birth rate,
whereas B and & are per capita birth and death rates, so that
this correspondence is not surprising. In fact, relations (33)
do not only hold for the PM model, but are generally valid.

Figure 1(a) shows the abundance distribution for the PM
model. We plotted the expected number of species per loga-
rithmic (base 2) abundance interval or, more precisely, we
plotted p(log,(k))=In(2)kES; vs log,(k), so that the integral
equals the expected total number of species,

dk

f p(log,(k))d log,(k) = fln(Z)kFSkl )k

Here, we used a continuum approximation for the abun-
dances k. Logarithmic abundance classes are commonly used
in ecology to represent the community composition. The
curves for the expected number of species without condition-
ing (ES,, blue circles) and with conditioning [E(S,|N), red
squares] almost coincide, indicating the equivalence between
both. The agreement with the simulated curve (green tri-
angles) is excellent, as expected because in this case our
solution is exact.

VII. RANDOM-FISSION MODEL

The second application of our self-consistent approxima-
tion scheme deals with the random-fission (RF) model. In
this model a speciation event consists of splitting a species
into two fragments, so that all fragment sizes are equally
probable [see Eq. (8)]. The abundance distribution ¢ of im-
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FIG. 1. (Color online) Species abundance distributions as pre-
dicted by self-consistent approach. We use Preston-like plots, i.e.,
the expected number of species per logarithmic (base 2) abundance
interval. Blue circles: the expected number of species IS, without
conditioning on the number of individuals N [see Eq. (17)]. Red
squares: the expected number of species (S| N) with conditioning
on the number of individuals [see Eq. (20)]. Green triangles: the
expected number of species E(S;) as obtained from a simulation of
the full model [transition rates (4) and (5)]. First we simulated 10*
events to reach the stationary regime, and then registered 1000 vec-
tors S with intervals of 10* events. We computed the mean of these

1000 vectors and regrouped the mean numbers S in logarithmic
(base 1.1) abundance k intervals. The self-consistent curves (blue
circles and red squares) almost coincide and convincingly agree
with the simulated curves (green triangles). Parameters: N=10%,
=10 for all panels, and « increases from top to bottom: (a) =0 or
PM, (b) @=0.05, (¢) @=0.5, and (d) a=1 or RF.
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FIG. 2. (Color online) Abundance distributions for random-
fission model and its self-consistency scheme. Blue circles: exact
equilibrium values [(S;|N) computed from Eq. (34). Green tri-
angles: exponentially decreasing functions (35) used to initiate self-
consistency scheme. Red squares: approximated values E(S;|N) as
obtained from self-consistency scheme, which coincide with the
exact values (curves of blue circles and red squares coincide). Pa-
rameters: N=1000 and w=1. (a) #=0.1, v=10"% (b) 6=100, v
=0.1.

migrating species has to be found self-consistently.

To obtain an ansatz for the distribution § we proceed as
follows. The master equation (3) can be used to construct an
equation for the expected number of species IS, with abun-
dance €. This equation reads

d
EEse =1 BSe_y = Qro+s)ESe + 1o ESey

N
+ > s [sP) +sPk - 0)]ES,, (34)
k=€+1
with
_ -0 ¢
RN -y TN

Note that the system of differential equations (34) for ¢
=1,2,...,N is autonomous. Indeed, the equations only de-
pend on the set of first-order moments kS;, and not on
higher-order moments such as [S;S,. This is quite remark-
able and seems to be a general property of neutral commu-
nity models [17,28].

As a consequence, we can solve for the equilibrium solu-
tion of Eq. (34) without having to consider the full master
equation (3). Figure 2 shows the equilibrium IS, as a func-
tion of k (blue circles). The solutions are (to a good approxi-
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mation) exponentially decreasing, except for large values of
k (k comparable to N), for which ES, is very small. To find
an ansatz for the self-consistency problem, we are mainly
interested in abundances k<N, because LS, for large k will
be modified by the community size constraint [which is
taken into account in Eq. (34), but not in the self-consistency
ansatz]. Thus, we fit an exponentially decreasing function to
k— IS, (Fig. 2, green triangles) and find

14 14
ES,=—N exp(— \/jk),
7 7

or in terms of the parameters of the self-consistency problem

[see Eq. (33)],
S, =~ 6 exp(— \/gk) (35)

The following assumption for the immigrant abundance dis-
tribution ¢ also leads to an exponentially decreasing function
k—ES k>

g =(1-p)p". (36)
Indeed,
> ="
m={
and, from Eq. (13),
k
Q=2 p'p T =kp*, (37)
=1
and, using Eq. (17),
ES, = pe% = Op*. (38)

The parameter p has to be determined so that the expected
community size EN, given by

pb
(1-p)*

equals the community size constraint N. For large N, we

have
pxl—\/gxexp<— \/%), (40)

so that Egs. (35) and (38) are consistent.

A further consistency check can be performed by comput-
ing the abundance distribution E(S,|N) with community size
constraint. We determine the normalization constants Z;(N)
from Eq. (22) using the fast Fourier transform and substitute
these constants into expression (20) for E(S,|N). The result
(Fig. 2, red squares) coincides with the exact expression, i.e.,
the equilibrium solution of Eq. (34), despite the very small
values of ES, (Fig. 2; note the logarithmic scale on the y
axis).

Next, we consider the self-consistency problem as such.
Using Egs. (38) and (39) for S, and EN, the computed
immigrant abundance distribution (25) is

EN=p02 Qp= 02 kpt=
k=1 k=1

(39)
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FIG. 3. (Color online) Comparison between assumed and com-
puted immigrant abundance distributions. Dashed red line: assumed
distribution ¢** [see Egs. (36) and (44)]. Solid blue line: computed
distribution g°™P [see Eqgs. (41) and (46)]. (a) RF model or a=1; (b)
interpolating model for «=0.5. The distributions are plotted for
three values of p=0.5,0.9,0.99 and approach each other for in-
creasing values of p, i.e., increasing community size N. Assumed
(dashed red line) and computed (solid blue line) distributions coin-
cide for p=0.99.

G = (1= pP8(0+ (1-pP S p @)
k>4€ -

Figure 3(a) compares this distribution g™ with the ansatz
distribution ¢** [see Eq. (36)]. The agreement between both
immigrant abundance distributions is excellent for p=1,
which is satisfied for large N. Based on this observation,
together with previous consistency checks, we conclude that
we have solved the self-consistency problem.

The corresponding species abundance distribution (15)
reads

p
P(S) = H o
Zyi=1 Sit

with normalization constant [see Eq. (16)]

9
InZy= 0> ph=—2-.
k=1 l_

Hence,
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P(S) = e~ 1-PpNT ] S— (42)
k=1 Pk*

This distribution can be written in terms of the parameters u,
v, and N of the RF model using Egs. (33) and (40),

vN v
0=~ —, pzexp<— \/:)
M I

The RF model we are approximating has fixed community
size N. This constraint is already implicitly present in distri-
bution (42) for p~1 or large N, because the corresponding
distribution P(N) is then sharply peaked at the community
size constraint N. We can also explicitly condition on the
community size constraint N [see Eq. (19)]

H — (43)

Z3(N) =1 Skl

P(S|N) =

with normalization constant, using Eq. (22),

Bl

Zy(N) =p" >

Note that P(S|N) does not depend on the parameter p.

It is interesting to note that not only the distribution P(N)
is sharply peaked, but also the distribution (S) [both are
marginal distributions of Eq. (42)]. Hence, the unconditioned
distribution (42) is equivalent to the distribution conditioned
on the mean values for N and S,

P(S|N,S) = (NS—'

S—-1

This distribution no longer depends on the parameters p and
0 of the self-consistency problem. Its formula becomes par-
ticularly simple when written in terms of labeled species,

P(ﬁ|N,S)=N+1.
)

Thus, the (approximated) stationary distribution of the RF
model assigns the same probability to all labeled species
states N for a fixed number of species S.

Figure 1(d) shows the species abundance distribution for
the RF model. Conditioning on N has no impact on the abun-
dance distribution (blue circle curve and red square curve
coincide), in agreement with our self-consistent approach.
The approximate abundance distributions correspond very
well with the simulated one (green triangles), as expected
because the approximation coincides with the exact solution
(see Fig. 2).

VIII. INTERPOLATING PM AND RF

Abundance distributions such as Egs. (31) and (43) can be
used to infer information about the speciation process active
in the ecological community. The question whether field data
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support PM or RF is most conveniently evaluated using a
generalized model that incorporates both speciation modes
with a parameter controlling the relative importance of the
two speciation modes. In this section we introduce and solve
such a generalized speciation model.

To do so, we consider a fragment size distribution s that
is a convex combination of PM and RF fragment size distri-
butions,

1
sWE) =(1-a)s,(€) + aﬁ.

The weight parameter « interpolates between PM (a=0) and
RF (a=1). Comparing the immigrant abundance distribu-
tions ¢, Eq. (27) for PM and Eq. (36) for RF, suggests the
following ansatz for the combined model:

4 =(1-a)5,(€) + a(l - p)p" . (44)

Because S, and EN are linearly dependent on ¢, we get

~Te.

ES, = 6(1 — a+ ak)

E}

(l-a)(1-p+a
N=p0 (1 —p)s i

Hence, the computed immigrant abundance distribution (25)
is

(45)

emp a(1-p)? )
¢ p‘<(1‘“)+(1_a)(1_p)+a 5,(0)
a(l —p)? w1 +alk-1)
T—a(-praz’ x-1 9

Figure 3(b) compares the self-consistency distributions g**
and ™ [see Egs. (44) and (46)]. The agreement between
both distributions is excellent for p~ 1, which is equivalent
to large N. Thus, an appropriate combination of the PM and
RF solutions yields the solution of the interpolating model.
Note that this is a nontrivial result, because the self-
consistency equations (26) are nonlinear.

The self-consistent approximation (15) of the abundance
distribution for the interpolating model reads

iVH [6(1 — a+ ak)]5

P(s)= Sk

s

Zy =1
with normalization constant [see Eq. (16)]
1-a+ak
nZy=0> —— = (1 - )0 1In(l - p) + af——.
k=1 k I-p
Hence,

. [6(1 — a+ ak)]5x
P(S) — (1 _ p)(l—a)ee—aﬂp/(l—p)pNH LA ==
k=1 Silk
(47)
We still have to impose the fixed community size of the
interpolating model. To do so, we determine p such that EN
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for distribution (47) equals the community size constraint N.
We assume large N or p= 1, so that Eq. (45) becomes
N l-« @

+ .
6 1-p (1-p)?

This is a quadratic equation in p, which can be inverted to
give the value of p. Together with Eq. (33) it allows us to
express distribution (47) in terms of the parameters u, v, «,
and N of the interpolating model. As in the PM and RF
models, the community size constraint can also be imposed
by conditioning on N. The conditional abundance distribu-
tion (19) can be computed using the fast Fourier transform.
Figures 1(b) and 1(c) illustrate how the species abundance
distributions of the interpolating model lie in between the
solution for the PM model [Fig. 1(a)] and the RF model [Fig.
1(b)]. Again, the abundance distributions are not noticeably
modified by conditioning on the number of individuals N
(blue circle curve and red square curve coincide) and agree
nicely with the simulated distributions (green triangles).

IX. DISCUSSION

We have introduced a self-consistent approximation
scheme to obtain stationary abundance distributions in neu-
tral community theory with various speciation processes. Ex-
cept for the most rudimentary speciation models, the inflow
of species in the community is determined by the community
composition. This feedback of the speciation process on
community structure complicates the model. Our approxima-
tion is based on cutting the feedback loop and matching self-
consistently the abundance distribution of immigrating spe-
cies. This yields explicit expressions for the stationary
species abundance distributions, which agree well with direct
simulation results.

The study of the regional community model constitutes,
first, a crucial step to compare model predictions with em-
pirical data. However, more theoretical work is needed be-
fore data comparison can be carried out. Indeed, species
abundance data are rarely available for the entire regional-
scale community. Rather, data are usually available for one
or more small and spatially localized samples of individuals
taken from the regional community [24]. This sampling pro-
cess can be modeled as one or more local communities re-
ceiving immigrants from the much larger regional commu-
nity. The derivation of the species abundance distribution for
the local communities constitutes, next, a nontrivial step.
This derivation, together with a proper data comparison, has
been carried out extensively for the PM model [24,29,30]
and is currently performed for the RF model [25].

We have shown that the self-consistency problem can be
formulated as a nonlinear self-consistency equation (26).
This equation is rarely exactly solvable (except for very
simple speciation models, such as the PM model). Numerical
techniques could be used to solve this equation directly. Al-
ternatively, one can solve the autonomous equations for the
expected numbers [iS; and construct an ansatz for the immi-
grant abundance distribution §. We have used this procedure
to solve the RF model. One could also simulate the stochas-
tic dynamics of the community and keep track of the specia-
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tion events. Reconstructing the distribution of the immigrat-
ing species abundance could lead to a reasonable guess for g.
For the interpolating model, we were able to obtain an ansatz
by combining the PM and RF solutions.

Our approximation scheme yields excellent results for dif-
ferent speciation models. It would be interesting to test the
versatility of our approach on a wider range of problems. For
example, the speciation models we studied in this paper have
a constant speciation rate per individual. Other speciation
models consider that the speciation rate is constant per spe-

PHYSICAL REVIEW E 81, 031911 (2010)

cies [16]. In the latter models, as the number of species fluc-
tuates, the community-level speciation rate varies over time,
which might complicate the analysis. Also, we restricted our
attention to approximating the stationary abundance distribu-
tion of nonspatial speciation models. It remains to be inves-
tigated whether our approach can be extended to study dy-
namical community properties [28], spatial speciation
models [31], or other community structure characteristics
such as phylogenetic relatedness between species [32].
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