
Microb Ecol (2014) 68:169–172
DOI 10.1007/s00248-014-0394-5

SHORT COMMENTARY

Only Simpson Diversity can be Estimated Accurately
from Microbial Community Fingerprints

Bart Haegeman · Biswarup Sen · Jean-Jacques Godon ·
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Abstract Lalande et al. (Microb. Ecol. 66(3):647–658,
2013) introduced a promising approach to quantify micro-
bial diversity from fingerprinting profiles. Their analysis
is based on extrapolating the abundance of the phylotypes
detectable in a fingerprint towards the rare phylotypes of the
community. By considering a set of reconstructed commu-
nities, Lalande et al. obtained a range of estimates for phy-
lotype richness, Shannon diversity and Simpson diversity.
They reported narrow ranges indicating accurate estima-
tion, especially for Shannon and Simpson diversities. Here,
we show that a much larger set of reconstructed communi-
ties than the one considered by Lalande et al. is consistent
with the fingerprint. We find that the estimates for phy-
lotype richness and Shannon diversity vary over orders of
magnitude, but that the estimates for Simpson diversity are
restricted to a narrow range (around 10 %). We conclude
that only Simpson diversity can be estimated accurately
from fingerprints.
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Introduction

A fast, inexpensive and accurate method to measure micro-
bial diversity would be a welcome addition to the toolbox
of microbial ecology. Fingerprinting techniques are still
considered to be good candidates, but their lack of quan-
tifiability is generally viewed as a major obstacle. A recent
paper in this journal by Lalande et al. [1] sheds new light
on this problem. Building on previous simulation studies [2,
3], they propose a quantitative framework to analyze the
estimation properties of diversity metrics from fingerprints.

The framework of Lalande et al. [1] consists of three
steps. First, the fingerprinting profile is analyzed: peaks are
detected, the area under the peaks is determined and the
background, that is, the area under the profile not attributed
to any of the peaks, is computed. Peak areas are assumed to
represent the abundance of the dominant phylotypes of the
community. The background area is assumed to be equal to
the total abundance of the other, rare phylotypes.

Second, the community abundance distribution is recon-
structed starting from the abundance of the dominant phylo-
types. This extrapolation step requires an assumption about
the abundance distribution of the rare phylotypes. Different
assumptions lead to different reconstructed communities,
which may be very dissimilar to the true (and unknown)
community. Lalande et al. [1] consider a set of recon-
structed communities to quantify the effect of the assumed
abundance distribution.

Third, phylotype richness, Shannon diversity and Simp-
son diversity are computed for each of the reconstructed
communities. Each of the computed diversity values is an
estimate of the true community diversity. If for a diversity
metric the range of estimates is wide, then the estimation
depends strongly on the assumed abundance distribution,
and the diversity metric cannot be estimated accurately. A

mailto:bart.haegeman@ecoex-moulis.cnrs.fr
mailto:bsen@fcu.edu.tw
mailto:godon@supagro.inra.fr
mailto:hamelin@supagro.inra.fr


170 B. Haegeman et al.

narrow range of estimates indicates that the diversity metric
can be estimated accurately. In that case, the range of esti-
mates can be interpreted as a measure of the accuracy with
which the diversity metric can be estimated.

Lalande et al. [1] applied this framework to nine in
silico generated fingerprints. They obtained narrow estima-
tion ranges of the order of ±10 % both for Shannon and
Simpson diversities and somewhat wider ranges for phy-
lotype richness. These findings lead to the conclusion that
accurate diversity estimation from fingerprints is possible,
especially for Shannon and Simpson diversities.

In our opinion, the framework proposed by Lalande
et al. [1] is a valuable contribution for evaluating the accu-
racy of diversity estimation from fingerprints. We note that
a similar framework was introduced recently to assess diver-
sity estimation from metagenomic data sets [4]. However,
we argue that the framework can yield stronger conclusions
than those presented in Ref. [1]. In particular, by consider-
ing a larger set of reconstructed communities, we show that
the estimation range for phylotype richness and for Shannon
diversity becomes very wide. Only for Simpson diversity
that we find a narrow estimation range. Hence, we are left to
conclude that only Simpson diversity can be estimated accu-
rately from fingerprints. This stands in sharp contrast to the
conclusions of Ref. [1].

To make our argument, we consider in Fig. 1 the data
set used in Fig. 1 of Ref. [1]. The left-hand panel uses
the same axis scaling as Ref. [1] (linear on x-axis, log-
arithmic on y-axis). The right-hand panel is identical to
the left-hand panel except that we use double logarithmic
scaling, which is more convenient for our purpose. The fin-
gerprint peak areas are represented as × marks. Recall that
these areas are assumed to be equal to the abundance of
the dominant phylotypes in the community. The black line

represents the rank-abundance curve of the data set from
which the fingerprint was generated, but which is unavail-
able for the diversity estimation from the fingerprinting
profile.

Four community reconstructions (see Appendix for
details) are shown as colored lines (red, yellow, green and
blue). Each of these reconstructed communities is consis-
tent with the fingerprinting data. That is, if one would
generate a fingerprint of the reconstructed communities,
one would get fingerprints that are very similar to the fin-
gerprint we are analyzing. In other words, fingerpinting
cannot tell the difference between these four communi-
ties. Nevertheless, the structure of these four communi-
ties is very different, as shown by their rank-abundance
curve.

The yellow community is a realistic reconstruction
because it is close to the data set from which the finger-
print was generated (compare yellow and black lines in
Fig. 1). The other three communities have a qualitatively
similar structure, but very different phylotype richness. Are
these numbers, such as 106 phylotypes for the blue commu-
nity, realistic? In fact, there is no reason to consider them
to be unrealistic. Even large metagenomic data sets are not
sufficiently informative to rule out such large numbers of
phylotypes, as argued in Ref. [4]. Therefore, when analyz-
ing diversity estimation from fingerprints, we should also
take into account more extreme reconstructions such as the
blue community.

The difference between the reconstructed communities
has important consequences for the diversity estimation
problem (see Fig. 2). For each reconstructed community,
we plot phylotype richness, Shannon diversity and Simpson
diversity. Recall that these values are interpreted as possi-
ble diversity estimates. The range of estimates for phylotype
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Fig. 1 A variety of reconstructed communities is consistent with a
fingerprinting profile. Rank-abundance curves are shown for the dom-
inant phylotypes obtained from the fingerprint (black × marks, to the
left of the dashed line), for four reconstructed communities of the
rare phylotypes (red, yellow, green and blue lines to the right of the

dashed line) and for the “true” community from which the fingerprint
was generated (black line). The two panels are identical, except that
in the left-hand panel, the scale of the x-axis is linear, whereas in the
right-hand panel, the scale of the x-axis is logarithmic
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Fig. 2 Estimation ranges differ greatly between diversity metrics.
For the four reconstructed communities of Fig. 1 (red, yellow, green
and blue), we plot phylotype richness (first column), Shannon diver-
sity (second column) and Simpson diversity (third column). The three
diversity metrics are expressed as effective numbers of phylotypes.
The grey-shaded regions indicate the range of diversity estimates
consistent with the fingerprint (see Appendix for details)

richness (from 103 to 106) and for Shannon diversity (from
700 to 2 104) is very wide. This implies that phylotype rich-
ness and Shannon diversity cannot be estimated accurately.
The range of estimates for Simpson diversity is narrow
(from 410 to 530 or 470 ± 13 %), implying that Simpson
diversity can be estimated accurately.

The above analysis is based on only four reconstructed
communities. How sensitive are the results to the choice
of these communities? To answer this question, we pro-
pose a general analysis in which we take into account all
communities consistent with the fingerprint (see Appendix
for details). We determine lower and upper bounds for the
estimation ranges of the three diversity metrics (shown as
grey-shaded regions in Fig. 2). As before, we find a nar-
row estimation range for Simpson diversity only, confirming
that Simpson diversity, but neither phylotype richness nor
Shannon diversity can be estimated accurately from finger-
prints. Interestingly, a similar analysis for metagenomics
data sets indicated that both Shannon and Simpson diver-
sities, but not phylotype richness, can be estimated accu-
rately [4].

To summarize, we have shown that the theoretical frame-
work of Lalande et al. [1] can be extended to reach the
following conclusions: (1) phylotype richness and Shannon
diversity cannot be estimated accurately from fingerprinting
profiles and (2) Simpson diversity can be estimated with an
accuracy of the order of 10 %. These conclusions should be
relevant for various fingerprinting techniques, such as dena-
turing gradient gel electrophoresis (DGGE), single-strand
conformation polymorphism (SSCP), ribosomal intergenic
spacer analysis (RISA) and terminal restriction fragment
length polymorphism (T-RFLP).
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Appendix

Here, we describe the reconstructed communities of Fig. 1
and the diversity estimates shown in Fig. 2.

First, we extracted the fingerprint peak areas from Fig. 1
of Ref. [1]. The total area of the 34 extracted peak equals
20 % of the total area under the fingerprinting profile
(hence, the peak-to-signal ratio PSR = 0.20 in the terminol-
ogy of Ref. [1]). The remaining 80 % of the area under the
profile corresponds to the background (that is, the subpeak
background percentage SBP = 0.80 in the terminology of
Ref. [2]).

Second, we constructed four communities consistent
with the fingerprint data. The 34 most abundant phylotypes
correspond to the fingerprint peaks. The relative abundance
of these phylotypes is equal to the peak areas divided
by the total area under the profile. Hence, the total rel-
ative abudance of the most abundant phylotypes is equal
to 0.20. We chose the abundance distribution of the rare
phylotypes such that the following conditions are satisfied:
(1) the total relative abundance of the rare phylotypes is
equal to 0.80 and (2) the abundance of a rare phylotype is
smaller than the abundance of each of the most abundant
phylotypes.

We report the abundance distribution of the rare phy-
lotypes as rank-abundance curves, that is, we give the
relationship between relative abundance pi and rank i for
the rare phylotypes (with rank i > 34):

• The red community has 103 phylotypes. Its rank-
abundance curve is quadratic on a log-log plot,
lnpi = −3.391 − 0.8554 ln i + 0.03750 (ln i)2 for
34 < i ≤ 103.

• The yellow community has 104 phylotypes. Its
rank-abundance curve is linear on a log-log plot,
lnpi = −2.924 − 0.8535 ln i for 34 < i ≤ 104.

• The green community has 105 phylotypes. Its
rank-abundance curve is linear on a log-log plot,
lnpi = −2.492 − 0.9750 ln i for 34 < i ≤ 105.

• The blue community has 106 phylotypes. Its rank-
abundance curve is linear on a log-log plot, lnpi =
−2.294 − 1.0306 ln i for 34 < i ≤ 106.

For the yellow, green and blue communities, the abundance
distribution of the rare phylotypes is power law. For the
red community this distribution is approximately power law
(the rank-abundance curve is slightly convex, see Fig. 1,
right-hand panel). For a community with 103 phylotypes,
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a power law distribution for the rare phylotypes does not
match smoothly the abundance of the dominant phylotypes.

Third, we computed three diversity metrics for the
four reconstructed communities: phylotype richness D0,
Shannon diversity D1,

D1 = eH with H = −
∑

I

pi lnpi, (1)

and Simpson diversity D2,

D2 = 1

C
with C =

∑

i

p2
i . (2)

The notation D0, D1 and D2 refers to Hill diversities
of order 0, 1 and 2 (see Ref. [4] for details). Because Hill
diversities can be interpreted as effective numbers of phy-
lotypes, they are intercomparable. Therefore, we prefer to
use the transformed diversity metrics D1 and D2 rather
than Shannon diversity index H and Simpson concentration
index C. We find:

• For red community: D0 = 103, D1 = 7.4 102 and
D2 = 4.1 102.

• For yellow community: D0 = 104, D1 = 2.8 103 and
D2 = 5.0 102.

• For green community: D0 = 105, D1 = 7.7 103 and
D2 = 5.2 102.

• For blue community: D0 = 106, D1 = 1.7 104 and
D2 = 5.3 102.

Finally, we generalized the analysis to a much large set of
reconstructed communities. More precisely, we considered
all reconstructed communities satisfying conditions (1) and
(2) above. This set, although it contains unrealistic commu-
nities (for example, communities with an abrupt transition
from dominant to rare phylotypes), is useful to obtain lower
and upper bounds for the estimation range of the diversity
metrics. Indeed, it is possible to determine the community in
this set yielding the lowest and highest diversity estimates.

The lowest diversity estimate is obtained for a community
in which all the rare phylotypes have the same abundance
as the smallest abundance of the most abundant phylotypes.
The highest diversity estimate is obtained for a commu-
nity in which there are a large number R of rare phylotypes
which all have the same relative abundance 0.20/R.

The results of this further analysis are shown as the grey-
shaded regions in Fig. 2. The lower end of these regions
are equal to the lowest diversity estimate. At the upper end,
the shade of grey becomes gradually lighter, corresponding
to the higest diversity estimate with R ranging from 104 to
107. It is interesting to note the dependence of the highest
diversity estimate on the number of rare phylotypes R for
the three diversity metrics: when R is large, the estimate for
phylotype richness increases proportional to R, the estimate
for Shannon diversity increases proportional to lnR and the
estimate for Simpson diversity tends to a fixed value. This
establishes another argument of why Simpson diversity can
be estimated more accurately than Shannon diversity and
phylotype richness.
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