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ABSTRACT

Over the past decade, the neutral theory of biodiversity has stirred up community assembly theory
considerably by suggesting that stochasticity in the form of ecological drift is an important factor
determining community composition and community turnover. The neutral theory assumes that all
species within a community are functionally equivalent (the neutrality assumption), and therefore
applies best to communities of trophically similar species. Evidently, trophically similar species may still
differ in dispersal ability, and therefore may not be completely functionally equivalent. Here we present
a new sampling formula that takes into account the partitioning of a community into two guilds that
differ in immigration rate. We show that, using this sampling formula, we can accurately detect a
subdivision into guilds from species abundance distributions, given ecological data about dispersal
ability. We apply our sampling formula to tropical tree data from Barro Colorado Island, Panama. Tropical
trees are divided depending on their dispersal mode, where biotically dispersed trees are grouped as one
guild, and abiotically dispersed trees represent another guild. We find that breaking neutrality by adding
guild structure to the neutral model significantly improves the fit to data and provides a better
understanding of community assembly on BCL. Our findings are thus an important step towards an
integration of neutral and niche theory.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

neglects species-specific differences (the neutrality assumption).
It oversimplifies ecology in order to emphasize that ecological drift

The astonishing biodiversity around the globe, especially in the
tropics, makes one wonder how this biodiversity has originated
and how it can be maintained. Traditionally, species composition
in an ecological community is explained by species-specific traits
and species requirements. By contrast, the more recent neutral
theory (Hubbell, 2001; Etienne and OIff, 2004; Rosindell et al.,
2011) explains species composition in an ecological community by
stochastic demography and dispersal. This theory deliberately
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is an important factor in community assembly (Rosindell et al.,
2011; Wennekes et al., 2012). Despite this simplification the model
can convincingly explain various biodiversity patterns, suggesting
that indeed ecological drift is an important factor in community
assembly (Etienne and OIff, 2004; Alonso et al., 2006).

The neutrality assumption states that all the individuals within
an ecological community have the same birth rates, death rates,
dispersal rates and speciation rates, irrespective of the species the
individuals belong to (Hubbell, 2001). The ecological community is
assumed to consist of individuals of functionally equivalent species
that compete with each other for space in the community. As a
result, patterns in abundance predicted by the theory are purely
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the result of drift, speciation and immigration, and not the result
of competitive asymmetries between the species in the local
community. The neutrality assumption is the most debated
assumption of the Neutral Theory of Biodiversity (McGill et al.,
2006; Purves and Pacala, 2008; Turnbull et al., 2008; Gotelli et al.,
2009). Most importantly, the neutrality assumption refutes the
idea of the unique correspondence between a species and its niche
(interpreted here as the set of conditions and requirements for a
species to survive (Hutchinson, 1958), although the exact meaning
of the niche concept is unclear (Chase and Leibold, 2003; Mclnerny
and Etienne, 2012)). More specifically, the neutrality assumption
ignores specific interactions between species and species-specific
adaptations, such as habitat specialization; furthermore it ignores
the effects of density dependence, ecological succession and the
impact of trait differences (Purves and Turnbull, 2010).

Several models explore the continuum between niche and
neutral models by looking at the effect of differences in birth
and death rates, which might arise through differences in intras-
pecific and interspecific competition (Jabot and Chave, 2011). In
the fully neutral case, intraspecific and interspecific competition
are identical, whereas classic coexistence theory predicts that
coexistence is promoted when intraspecific competition is stron-
ger than interspecific competition (Adler et al., 2007). Combining
community assembly with classic coexistence modelling, Noble
and Fagan (2011) showed that when intraspecific competition
exceeds interspecific competition, patterns similar to a fully
neutral model emerge. Along similar lines, Haegeman and
Loreau (2011) investigated how altering the difference between
intraspecific and interspecific competition affects the species
abundance distribution. They focused on the parameter space
where intraspecific competition exceeds interspecific competition,
i.e. where classical theory predicts coexistence. They found that
with increasing interspecific competition, fluctuations in local
community size increase, and the local community becomes more
prone to extinction. More importantly they found that altering the
difference between intraspecific and interspecific competition
only influenced the species abundance distribution marginally,
and concluded that from species abundance data alone it might be
difficult to assess the degree of intraspecific versus interspecific
competition. Proceeding even further, Pigolotti and Cencini (2013)
found an analytical expression for the expected species abundance
distribution where the degree of intraspecific and interspecific
competition can be tuned by a single parameter. Their results
suggest a profound impact of the degree of intraspecific versus
interspecific competition not only on the species abundance
distribution, but also on the average species lifetime and on the
total variation in species lifetimes in the local community.

Competitive asymmetry could also result in differences in birth
rate irrespective of competition. Du and colleagues found that
introducing competitive asymmetry breaks down neutral patterns
(Du et al., 2011), but also that these effects can be counteracted by
negative density dependence: communities with intermediate
competitive asymmetry and intermediate levels of negative den-
sity dependence show species abundance distributions that are
indistinguishable from neutral distributions, suggesting that neu-
tral patterns can emerge from non-neutral assumptions.

Breaking neutrality through the introduction of differences in
dispersal rather than birth and death rates has been less well
studied. Turnbull et al. (2008) investigated the effect of an
equalizing trade-off between seed mass and seed number on
neutrality. They found that after including such a trade-off, neutral
patterns break down as soon as seed arrival becomes stochastic.
Liu and Zhou (2011) relaxed the neutrality assumption by intro-
ducing stochastic differences in dispersal ability between species.
As the standard deviation of the Gaussian distribution governing
these differences increases, the neutral patterns break down and

community assembly becomes deterministic, where species with a
high dispersal ability tend to dominate the local community. Liu
and colleagues compared the effect of differences in dispersal
ability to data generated with the neutral model without these
differences, but did not confront their model with empirical data.

Trophically similar species may come close to fitting the
neutrality assumption, but differences in dispersal may prevent
them from being functionally equivalent. Differences in dispersal
might arise through differences in seed size (Muller-Landau and
Hardesty, 2005), differences in fruit size (Seidler and Plotkin,
2006) but might also manifest themselves as differences in flight
prowess (Valtonen et al., 2013) or differences in pelagic larval
duration in coral reef fish (Victor and Wellington, 2000; Almany
et al.,, 2007). In this paper we will study such differences in
dispersal, focusing on tropical trees. The majority of tropical tree
species (73%) disperse through animal means (Muller-Landau and
Hardesty, 2005), such as bats, birds, mammals, ants and some-
times even fish. The other 27% of tree species relies on abiotic
factors to disperse their seeds, such as wind, water or ballistics.

By definition, neutral models fail to include differences in
dispersal between species that share the same local community
and metacommunity. Here we present a model where we classify
species according to their dispersal syndrome, We will call the
resulting classes guilds. This is a simple, but important step
towards incorporating differences between species without need-
ing to explicitly quantify these differences for every species in the
community. Instead we only need to quantify the differences
between guilds, and assess the importance of these differences
for community assembly. Our model breaks the neutrality assump-
tion of the standard neutral model (Hubbell, 2001; Etienne and
Alonso, 2005) by subdividing the community into two guilds,
where each guild is a group of species that have the same dispersal
rate. Between guilds, dispersal rates may differ, but the speciation
rate, birth and death rates are identical. We show that our model
can accurately distinguish between datasets including a guild
structure, and datasets that do not have any guild structure. Our
model is able to detect signatures of guild structure from the
species abundance distribution when combined with ecological
data regarding dispersal, refuting the idea that the species abun-
dance distribution does not contain sufficient information to draw
conclusions about underlying community assembly mechanisms.
Secondly, we show that parameter estimates obtained with our
model are accurate and differ considerably from estimates
obtained using the standard neutral model without guild struc-
ture. Lastly we illustrate the model by applying it to the tropical
tree dataset of Barro Colorado Island (BCI).

2. Model

We assume that there are two guilds X and Y that differ in their
immigration parameter m; (i=X, Y); all species within each guild
share the same migration parameter m;. All species, regardless of
the guild they belong to, have the same fundamental biodiversity
number 6, as in the standard neutral model. In the metacommu-
nity, every time step one individual dies and is replaced by an
individual from either guild X or guild Y. With probability vy a
speciation event occurs resulting in a new species that belongs to
guild X and to guild Y with probability vy. With probability
1—vx—ry no speciation event occurs; then the new individual
belongs to guild X or Y depending on the relative abundance of
guilds X and Y in the metacommunity. Over time the relative
abundances of both guilds reach a dynamical equilibrium. The
equations we derive in Appendix A are applicable to the general
case where vy # vy, However, we found that the statistical power
in such cases is much reduced. Furthermore, we focus here on
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breaking neutrality in dispersal rather than speciation. Hence, we
treat speciation to be equally likely between guilds, such that half
of the speciation events result in a new species of guild X and half
of the speciation events result in a new species of guild Y. This
implies that vx=vy=1/2.

In the local community, a deceased individual can be replaced
by either an individual from the local community with probability
1—my—my or by an immigrant from the metacommunity; this is
an individual from guild X with probability my or an individual of
guild Y with probability my. The migration probability m; of guild i
depends on the dispersal ability of guild i, here called «;, and the
relative abundance of the guild in the metacommunity, p;. The
migration probability of guild i is then given by m;=a;p;. The
dispersal ability «; is bounded between [0,1] where values close to
zero indicate low dispersal ability and values close to one indicate
good dispersal ability.

3. Sampling formula

In the case of a single guild, fitting the neutral community
model to data makes use of the Etienne sampling formula
(Etienne, 2005), which is a dispersal-limited extension of the
Ewens sampling formula (Ewens, 1972). This formula gives the
probability of a data set of species abundances in a sample as a
function of the model parameters. Here we briefly describe the
extension of the neutral sampling formula to the case of two guilds
and we provide a more detailed derivation in Appendix A.

The stationary abundance distribution of the neutral commu-
nity depends on the fundamental biodiversity number € and on
the fundamental dispersal number I, which are defined as

0= U%M__])andlzm(]_])

where v is the speciation rate, Jy; is the metacommunity size, J is
the local community size, and m is the migration probability.
Likewise, the stationary abundance distribution of the two-guild
neutral community can be expressed in terms of guild-specific
biodiversity numbers 0x and 6y and guild-specific dispersal
numbers Iy and Iy (see Appendix (S4A) and (S4B)). Our assumption
on neutrality with respect to speciation implies Ox=60y=0/2. We
define migration from the metacommunity to the local commu-
nity as the product of dispersal ability and the relative frequency of
the guild in the metacommunity, such that for guild i: m;=a;p;,
where @; is the dispersal ability of guild i and p; is the relative
frequency of guild i in the metacommunity. For the dispersal
numbers, using the guild-specific immigration probabilities
m;=a;p;, we obtain Iy and Iy:

Iy = axpx(J—1) aypy(—1)
1—axpx—aypy 1—axpx—aypy

Note that §=0x+6y and I=Ix+Iy, that is, the speciation and
immigration processes are split out over the two guilds. Using the
guild-specific biodiversity and dispersal numbers, the two-guilds
abundance distribution is (see Eq. (S8)):

and Iy = 1

P(Dx, Dy, Ix, Iy,J) = P(lx. Jy | Ix Iy, ))P(Dx| 9X71XJX)P(E)Y| Oy,ly.Jy)
()

where vector Dxcontains the species abundances in guild X and
vector Dy contains the species abundances in guild Y. The second
factor in the right-hand side, P(Dx|0x,IxJx), is the one-guild Etienne
sampling formula of guild X, as if it was isolated from guild Y (but
with the appropriate biodiversity and dispersal number). The third
factor in the right-hand side, P(Dyl6y,lyJy), is the Etienne sampling
formula of guild Y, as if it was isolated from guild X. The two
isolated guild abundance distributions are combined through the

probability distribution of the guild sizes (see Eqs. (S1) and (S6)),
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Hence, as far as the stationary abundance distributions are
concerned, the dependence between guilds is concentrated in the
guild sizes. In other words, after conditioning the abundance
distribution on the guild sizes, and for given values of Ix and Iy,
the abundance distributions of guild X and guild Y are indepen-
dent. This shows that the one-guild abundance distributions are
the fundamental building blocks of the abundance distribution of a
community consisting of two (or more) neutral guilds.

Eq. (2) is not yet the full sampling formula, because Ix and Iy
depend on px and py (see Eq. (1)), which are variables, not
parameters. The distribution of the metacommunity guild sizes
px and py=1-px is a beta distribution (set Ox=0y=60/2 in Eq.
(510)),

I'© - 0/2-1
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Hence, we find the full two-guild sampling formula by inte-
grating over all possible values of px,

. 1 i i
P(DX,DYI6‘,ax,0n()=/0 P(Jx.Jy)P(Dx|0,1x,Jx)P(Dy | 0.1y.]y)p(px | 0)dpx  (5)

Code to calculate this sampling formula for a dataset is
available in the GUILDS package for R.

4. Conditioning on guild size

Using Eq. (3), we can calculate the expected guild sizes, given
ay, ay and J:
JIx Jaxpx

Elxlax.av.)) = (Ix+Iy) ~ axpx+aypy €2)

JIy _ Javpy
(Ix+Iy) axpx+aypy

E(ylax,ay.)) = (6b)

From the expected guild sizes it follows that the ratio of guild
sizes is equal to the ratio of dispersal rates: E[Jx]/E[Jy] = axpx/Qypy-
This is close to ax/ay for typical values of 8 such as =50, because
then the beta distribution of Eq. (4) is sharply peaked around
0.5 Explorations of the sampling formula confirmed that our
estimated values for the dispersal parameter closely mimic the
ratio of guild sizes (Fig. A1). This is also intuitively understandable,
consider two guilds, with one guild being twice as large as the
other guild (i.e. Jy=2Jy). In order to reach such a skewed distribu-
tion of individuals, either this distribution is already present in the
metacommunity, or there is a large skew in dispersal ability. The
beta distribution we assume in the metacommunity (Eq. (4)) does
allow for some divergence from a 50/50 ratio of guild sizes, but on
average we do not expect the metacommunity to be highly
skewed towards one particular guild. As a result, we expect that
given a dataset with differently sized guilds, our sampling formula
will estimate differences in dispersal ability and hence assume
some form of guild structure, even when these differences in guild
size are not caused by guild effects. We have circumvented this
problem by conditioning our sampling formula on guild sizes. This
yields the probability of our data given the parameter values and
the guild sizes. As a result, differences in parameters, and any
detected guild effects, are independent of guild size and solely
dependent on differences in dispersal ability.
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The joint probability of a combination of guild sizes is given by
(see Appendix equation (S12)):

-1
P(]Xn]Ylg’aX’aY’]) = /0 P(]X’]YlIX91Y9J)p(pX|9)de (7)

We condition by dividing our sampling formula by this like-
lihood, and thus obtain:

P(BX’BYI 0, ax, ay.Jx.Jy)
Jo PUXa]Y)P(Bxl 0, 1x,Jx>P(By| 0.1y, ]y)/)(px\e)dpx
B Jo PUx-Jy 1 Ix.Iv.J)p (px | 0)dpx

The conditioned sampling formula no longer results in a relation
between guild size and estimated dispersal ability (Fig. A1). Code to
numerically integrate the conditioned sampling formula, given a
dataset, is partly based on the TeTaMe programme (Jabot et al., 2008)
and is available in the GUILDS package for R (Janzen, 2014).

®

5. Testing on artificial data

The two-guilds sampling formula can be reduced to the Etienne
sampling formula of the standard, single-guild, neutral model by
setting the dispersal ability of both guilds to the same value
(ax=ay). Throughout the text we will refer to this model as DO.
As an alternative model, we allow the dispersal rates to differ
between guilds (ax# ay). We will refer to this model as D1. To
assess how well we can distinguish the two models from each
other, we generated 100 replicate datasets for all unique combina-
tions of #=[30, 100, 300] and a=[0.001, 0.01, 0.1]. There are
9 different combinations for DO (all combinations of € and «,
3 x 3), and 9 different combinations for D1 (3 different € values
with one of three @ combinations: [0.001, 0.01], [0.001, 0.1] or
[0.01, 0.1], which again yields 3 x 3 combinations). Community
size was set at 20,000 individuals. We generated artificial datasets
using a three-step procedure: first, the sizes of guilds X and Y in
the metacommunity (assuming that the metacommunity size is
infinite), were drawn from a beta distribution with parameter €
(Eq. (4)). Secondly, the total number of individuals (J;) of each guild
i in the local community was drawn from Eq. (2) with parameters
J, Ii. The species abundance distribution of each guild was then
generated using the urn scheme as described in Etienne (2005)
with parameters | and I. Code to generate a local community
according to the aforementioned procedure is available in the
GUILDS package for R.

For every artificial dataset we performed maximum likelihood
estimation for the two models (DO, D1), where the likelihood
maximization was started at the parameter values used to gen-
erate the data with. The obtained likelihood values for the
maximum likelihood optimum were used to calculate the Akaike
Information Criterion (AIC) (Akaike, 1974):

AIC =2k—2 In(L)

where k is the number of free parameters of the model, and L is the
Maximum Likelihood of the model. The number of free parameters in
the model is 2 for the DO model, (6 and &) and 3 for the D1 model (6,
Ay, and ay). After calculation of our AIC values, we compared the AIC
scores with AIC weights (Wagenmakers and Farrell, 2004):

exp(— (1/2)AAIC)
Sk -1 exp(— (1/2)AAIC)
where AAIC=AIC-min(AIC), and K is the total number of models
compared (in this case, 2). AIC weight w; can be interpreted as the

probability of model i being the best model among the models
considered.

W;(AIC) =

To assess the accuracy of our parameter estimates we per-
formed Maximum Likelihood estimation for the same simulated
communities, but now starting at a grid of 2¢ initial parameter
combinations (with d being the number of free parameters in the
model, 2 for DO, 3 for D1), not necessarily including the values
used to generate the data. The initial values contained all possible
combinations for € of [30,300] and « of [0.001, 0.1]. Using the 100
obtained Maximum Likelihood estimates we calculated the 25th,
50th and 75th percentiles.

6. Empirical data

To illustrate the application of our sampling formula, we
performed both model selection and parameter estimation tech-
niques on a well-studied dataset of tropical forest trees: the
Neotropical community dataset of Barro Colorado Island (BCI),
Panama (Condit et al., 1996, 2002; Hubbell, 2001; Volkov et al.,
2003; Etienne, 2005). The dataset consists of the abundance of all
free-standing woody plants with > 10 cm diameter at breast
height in 50 ha of forest. We analysed censuses from 1982, 1985,
1990, 1995, 2000 and 2005. The resulting dataset consists of
recorded abundances of 6 different years, 252 woody plant
species, with a summed total over 20,000 individuals per census.
Tree species in this data set are grouped according to their
dispersal syndrome, where all biotically dispersed (i.e. via birds
(171 species), bats (37 species) and mammals (194 species)) trees
are grouped together in one guild, and all abiotically dispersed
trees (i.e. wind (33 species), water (1 species), ballistic means (10
species)) are grouped together in another guild (Muller-Landau
and Hardesty, 2005).

7. Posterior analysis

To elucidate the differences between the models, we calculated
the expected species abundance distribution for every dataset,
using a hybrid approach of simulation and exact calculation. The
expected species abundance distribution was approximated as
follows: Given Jx and Jy we obtained Ix and Iy by first drawing px
from:

P(]X’JYIIX5IY>]) (PX| 0)
Jo PUx-JylIx.Iy.J)p (px|6) dpx
and then calculated Ix and Iy using Eq. (1). We then calculated the

expected number of species in guild i with n individuals using Eq. (6)
from Etienne and Alonso (2005):

©

P(px| 0, ax,ay.Jx.Jy) =

1 0-1
0.0 = () [ wonpa -y, a (10)

Because drawing from the distribution in Eq. (9) is inherently
stochastic, we averaged over 100 replicates to obtain the final
expected abundance distribution.

Furthermore we studied the power of the imposed guild
structure on the data, i.e. we determined whether adding guild
structure to the data adds information. We did this by randomiz-
ing the datasets 100 times, by randomly assigning species to a
guild (with equal probability), thus removing any guild structure.
For every randomized dataset we then used Maximum Likelihood
Estimation with both models, initialized at a grid of initial values
(all possible combinations for @ of [30,300] and «a of [0.001, 0.1]).
Using AIC weights we estimated which of the two models best
explained the data. If the imposed guild structure provides
additional information on the dataset, we would expect that after
randomization any signals of guild structure are lost, and the DO
model is favored. Conversely, if any random subdivision into two
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groups would also cause detection of guild structure and the D1
model would be favored after randomization the detection of guild
structure in the original data set is ecologically meaningless.

Lastly we used our sampling formula to evaluate the goodness-
of-fit of the model with guild structure to empirical data, by
performing an ‘Exact’ test of neutrality (Etienne 2007). Using the
parameter estimations obtained with Maximum Likelihood Esti-
mation, we generated 100 different data sets (using the maximum
likelihood estimates for 8 and «). Datasets were generated by first
drawing px from Eq. (9), then using Jx and Jy from the data and our
obtained maximum likelihood estimates for & and « we generated
the species abundance distribution for each guild using the urn
scheme as described in Etienne (2005). For these 100 replicate
datasets we then again calculated the model parameters and
likelihood using Maximum Likelihood Estimation as described in
the previous section (this is different from Etienne (2007) who did
not maximize the likelihood - the procedure used here is less
conservative (Efron and Tibshirani, 1993)). If the likelihood of the
empirical data is smaller than the large majority of likelihoods
from the replicate datasets, the observed community differs
strongly from a neutral community. If however the likelihood of
the empirical data is not different from the obtained frequency
distribution, the observed abundance distribution does not con-
tain a detectable signal of non-neutrality.

8. Results

The ability to accurately select the correct model is essential for
the implementation of our sampling formula. Not only should our
sampling formula favour the more complex model when the data
warrants it, it should also reject the more complex model if the
data shows no sign of guild structure. We tested the ability of the
sampling formula to detect guild structure by confronting it with
artificially generated data. The artificial data contained either no
guild structure at all, or was generated including different degrees
of difference in dispersal limitation between guilds. Data gener-
ated using the DO model (no guild structure), was correctly
identified as having no guild structure in 88% of all simulated
datasets (794 out of 900 datasets were correctly identified as DO).
Data generated using the D1 model was correctly identified as
having guild structure in 85% of all simulated datasets (765 out of
900 datasets were correctly identified as D1). Hence, type I (116/
900=12.88%) and Type II (135/900=15%) errors are very similar,
and the model adequately detects guild structure in the majority
of the simulated datasets we analysed.

Using artificial data generated with either the DO or the D1
model, we tested the precision and bias of the new guilds
sampling formula. We report the 25th, 50th and 75th percentiles
of 100 replicates (Table 1). For the DO model, the parameter value
used to generate the data fell between the 25th and 75th
percentiles for 8 out of 9 parameter combinations. For the D1
model, the parameter values used to generate the data all fell
between the 25th and 75th percentiles. The bias of the DO model
was small: the 50th percentiles of maximum likelihood estimates
for datasets simulated with high dispersal values (& > 0.001) were
close to those used to simulate the datasets. Combinations with
low dispersal (@¢=0.001) tended to have a median slightly under-
estimating 6, but an accurate estimate of ay, except for the
combination [300,0.001], for which none of the percentiles
included the correct ax value. Precision of the DO model was high,
with the overall spread of estimated parameter values closely
clustered around the median value, with a notable exception for
the combination [300,0.001], where estimates for ayx have a large
spread. The D1 model had a similarly low bias as the DO model and
median estimates were close to parameters used to generate the

data. Precision of the DO model was high, with the 25th and 75th
percentile generally close to each other, except for one combina-
tion: [30, 0.1, 0.01], where the 75th perecentile of the estimate for
ax was 1.

For the empirical dataset, the D1 model had a much higher
likelihood than the DO model, for all censuses. After penalizing the
likelihood for added complexity and calculating the corresponding
AIC score and AIC weights, the D1 model was convincingly
selected.

For the six BCI censuses, we found parameter estimates using
both the DO and the D1 model (Table 2, Table A1). The DO model has
been shown to have two competing optima (Etienne et al., 2006),
one with a high value for @ and low value for & and another with a
low value for @ and a high value for a. For the D1 model we found
two competing optima as well. One of the two optima combines high
diversity with high dispersal limitation and typically has a high 6
value (~200), combined with low « values (~0.005 and ~0.0008).
whilst the other optimum combines low diversity with low dispersal
limitation and has a lower @ value (~53) combined with one
extreme « value (of 1.0) and one much lower a value (~0.0006).
Table 2 only shows the most likely optima for each model, parameter
estimates for all optima can be found in Table A1.

For three out of six BCI censuses, a low diversity and low
dispersal limitation (for one guild) optimum is favored over the
high diversity, high dispersal limitation optimum. In all censuses,
however, the dispersal ability of the guild that relies on biotic
dispersal is much higher than the dispersal ability of the guild that
relies on abiotic dispersal.

Considering both the ability of our sampling formula to detect
or reject guild structure in artificial datasets and the large
differences in dispersal limitation parameters between guilds, we
conclude that using our guild sampling formula we have convin-
cingly detected guild structure based on dispersal syndromes for
all six BCI censuses.

We performed the ‘exact’ test of neutrality as described in the
methods section, to estimate whether the observed data is the
result of a guild structured process, or whether perhaps the
observed data is the result of a different process. All optima for
the D1 model have non-significant p-values for the ‘exact’ test of
neutrality (Table 2), and hence we cannot distinguish patterns in
these communities from those generated with our model with two
guilds. All optima for the DO model have significant p-values,
except for the census of 1990, which has p-values of 0.05 and 0.06,
which are barely non-significant. This is in contrast with previous
comparisons between the BCI data and the neutral model, where
using summary statistics Jabot and Chave (2011) were unable to
reject neutrality. Hence, our direct use of the likelihood provides
more statistical power. The combined results for the DO and D1
models therefore strongly suggest that guild structure is an
important aspect of the empirical data.

Randomization tests revealed that for all six datasets, rando-
mization removed any signal of guild structure (Fig. 1). AIC weight
was higher for the DO model than for the D1 model for all 100
replicates for censuses 1985, 1990, 1995, 2000 and 2005. The 1982
census had 90 out of 100 replicates for which the AIC weight of the
DO model was larger than the AIC weight of the D1 model,
retaining a guild signal after randomization in 10% of the repli-
cates. Together these results indicate that the subdivision based on
ecological data conveys more information than a random subdivi-
sion in guilds does.

For all datasets we plotted the empirical species abundance
distribution versus the expected abundance distribution under the
Maximum Likelihood Estimates (Fig. 2). For all datasets we
observe that the DO model tends to underestimate abundances
for guild X, whilst overestimating abundances for guild Y. It
appears that, in an attempt to fit best to both guilds, neither of
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Bias and precision of the maximum-likelihood estimates as shown by the median and the 25th and 75th percentiles of the estimated parameter values of 100 simulated data

sets per parameter combination.

Parameters used to generate data

Estimated parameter values (25th, 50 and 75th percentiles)

Model 0 ax ay 0 ax ay
DO 30 0.100 28.49 30.07 35.24 0.06219 0.09033 0.13310
30 0.010 24.66 29.94 36.17 0.00679 0.00960 0.01674
30 0.001 10.81 21.70 31.83 0.00097 0.00148 0.00691
100 0.100 93.89 101.93 111.64 0.06711 0.09420 0.12661
100 0.010 80.80 104.43 126.31 0.00784 0.00955 0.01369
100 0.001 40.39 61.69 106.27 0.00102 0.00127 0.00163
300 0.100 277.82 313.17 351.06 0.07192 0.09331 0.12084
300 0.010 230.08 283.26 355.46 0.00909 0.01029 0.01224
300 0.001 90.20 173.06 255.91 0.25069 0.50046 0.75023
D1 30 0.100 0.010 28.64 33.29 39.75 0.02107 0.07899 1.00000 0.0046 0.0079 0.0251
30 0.100 0.001 27.57 3115 36.15 0.04524 0.08278 0.15556 0.0007 0.0009 0.0012
30 0.010 0.001 23.86 29.23 39.47 0.00565 0.01010 0.03525 0.0007 0.0009 0.0012
100 0.100 0.010 87.01 98.99 113.95 0.05214 0.11171 0.25117 0.0066 0.0076 0.0109
100 0.100 0.001 95.00 104.36 128.20 0.04673 0.08621 0.11942 0.0008 0.0010 0.0012
100 0.010 0.001 73.29 90.36 121.90 0.00760 0.01087 0.01855 0.0008 0.0010 0.0011
300 0.100 0.010 270.00 308.83 365.12 0.06318 0.09173 0.14091 0.0084 0.0093 0.0104
300 0.100 0.001 273.45 304.43 370.33 0.07156 0.09956 0.13416 0.0008 0.0010 0.0011
300 0.010 0.001 242.87 287.32 340.56 0.00890 0.01012 0.01261 0.0009 0.0010 0.0011
Table 2

Parameter estimates for six different censuses of Barro Colorado Island. The DO model does not take into account differences in dispersal between the guilds, the D1 model
does take these differences into account. Guild X represents tree species with biotic dispersal, and guild Y represents tree species with abiotic dispersal. The p-value of the
‘exact’ test of neutrality is reported in the last column.

Census General statistics Sx Sy Model Parameter estimates Model fit AAIC AICW P-value
J Jx Iy 0 ax ay LL AIC
1982 20914 18321 2593 196 46 DO 33.66 0.0515 0.0515 —398.24 870.55 93.35 0 0.02
D1 255.64 0.0047 0.0008 —369.79 777.2 0 1 0.58
1985 20742 18203 2539 197 44 DO 32.83 0.0569 0.0569 —400.20 874.77 97.76 0 0
D1 285.24 0.0045 0.0008 —369.71 777.01 0 1 0.28
1990 21253 18641 2612 189 42 DO 31.10 0.0541 0.0541 —392.60 858.1 86.65 0 0.05
D1 53.45 1.0000 0.0006 —366.14 77145 0 1 0.87
1995 21460 18812 2648 188 41 DO 30.90 0.0521 0.0521 —403.60 879.48 87.99 0 0
D1 53.19 1.0000 0.0005 —376.52 791.49 0 1 0.66
2000 21205 18607 2598 187 42 DO 30.44 0.0567 0.0567 —392.25 856.69 84.23 0 0.04
D1 52.86 1.0000 0.0006 —366.63 772.46 0 1 0.93
2005 20860 18321 2539 188 43 DO 30.25 0.0630 0.0630 —390.61 853.23 88.97 0 0.04
D1 232.02 0.0046 0.0008 —363.42 764.26 0 1 0.56

them is fitted well, which explains the poor performance of the DO
model on our empirical data. For the D1 model we observe that for
both the high diversity, high dispersal limitation optima (1982,
1985, 200) and the low diversity, low dispersal limitation optima
(1990, 1995, 2000) expected abundance distributions closely
match the empirical data (Fig. 2). For guild Y both optima show
similar patterns, whereas for the larger guild X, the high diversity,
high dispersal limitation optima tend to expect a higher number of
rare species than the low diversity, low dispersal limitation
optimum.

9. Discussion
In this paper we have presented a novel sampling formula that

extends the neutral model to a non-neutral setting of two guilds
with different dispersal modes. The purpose of our sampling

formula is two-fold: (1) to assess whether a subdivision into two
guilds, based on ecological information regarding dispersal,
amounts to a statistically significant difference in community
structure and (2) to illustrate how to determine, for empirical
data sets, to what extent the two guilds differ in their dispersal
ability.

Using simulated data we have shown that our sampling
formula can detect guild structure from data generated including
guild structure and reject guild structure when guild structure was
not imposed on the simulated data. Furthermore, the simulation
results showed parameter estimates obtained using our sampling
formula to be unbiased (i.e. close to the parameters used to
generate the data), and precision of our parameter estimates was
generally high (but see below) (i.e. spread in parameter estimates
was low). Our new guilds sampling formula allowed us to
conclude that for all six censuses of tropical tree communities in
BCI, Panama, inclusion of guild structure was favoured and tree
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Fig. 1. Fraction of replicates assigned to each model (DO or D1) after randomizing the BCI datasets by randomly assigning species to a guild. The number of replicates is 100

for every census.

species relying on biotic dispersal tend to be statistically and
biologically significantly less dispersal limited than tree species
relying on abiotic dispersal.

It has been suggested that the species abundance distribution
contains insufficient information to distinguish between compet-
ing models (Cohen, 1968; Mcgill, 2003; McGill et al., 2006, 2007;
Ricklefs, 2006), and that additional data are needed to test the
validity of community assembly models, for instance in the form of
phylogenetic diversity or spatial abundance patterns (Jabot and
Chave, 2009; McGill et al, 2006). Here we show that we can
distinguish between competing models, using the species abun-
dance distribution combined with ecological information about
dispersal mode. It should be noted however that we can only
distinguish between competing models when we keep speciation
rates between guilds equal in the metacommunity, i.e., fx = 6y.
When allowing for differences in speciation between guilds by
leaving both parameters free to be optimized independently,
preliminary analyses suggested that we can no longer distinguish
between competing models, due to a lack of information in the
data. Furthermore, including information on dispersal and guild
structure does not resolve the multiple optima problem of the
Etienne Sampling Formula. The Etienne Sampling Formula can
potentially yield multiple optima with similar likelihood values.
Situated at opposite ends of the parameter continuum, one
optimum is typically associated with a high value for @ and a
low value for I (or m) and the other optimum with a low value for
0 and a high value for I (or m). Additional information about the
local community tends to favour one of these two optima. Jabot
and Chave (2009) combined abundance data and phylogenetic
data within an approximate Bayesian framework and recovered
only one optimum, with high € and low I In another approach,

Etienne (2007) combined information on multiple local commu-
nities to obtain estimates for the neutral model and also found
only a single optimum. Here we have included information on
guild structure, based on ecological information about dispersal,
and recover two competing optima. However, one of these optima
seems to be a mathematical abnormality, which is situated at the
very limit of parameter space. Parameter estimates for this
optimum reflect limited diversity, but extremely low dispersal
limitation for one guild (¢=1) and high dispersal limitation for the
other guild (a<0.001). Expected abundance distributions for
these extreme dispersal optima seem to reflect the empirical
abundance distributions well, although the ecological interpreta-
tion of unlimited dispersal remains problematic.

Parameter estimates for the Tropical Tree datasets from BCI
suggest high values for @ (average value of 215.42) and low values
for o (average values of 0.0050 and 0.00077 for the biotic and abiotic
dispersing guilds respectively, ignoring the optima with extreme
values), implying that the tropical tree ecosystem in BCI is highly
diverse and fairly dispersal limited. This agrees with previously
obtained estimates (Jabot and Chave, 2009). The guild that relies
on biotic dispersal (e.g. through birds, bats and mammals) consis-
tently has a 5.75 (sd=0.125) times higher estimated dispersal ability
(again ignoring the optima with extreme « values), than the guild
relying on abiotic dispersal, such as dispersal through ballistics,
gravity, wind and water. This is a much smaller difference than
previously estimated (Thomson et al., 2011), where a more than 100-
fold difference was measured in dispersal distance between abiotic
and biotic dispersers. By contrasting, focusing more on tropical trees,
Muller-Landau et al. (2008) were unable to detect significant
differences in dispersal distance between abiotic and biotic disper-
sers. Dispersal ability does however not only capture dispersal
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Fig. 2. Empirical (grey bars) and expected (solid curve: D1 model, dashed curve: DO model) species abundance plots for all BCI censuses. Histograms on the left hand side
represent the biotically dispersing guild, histograms on the right hand side the abiotically dispersing guild. Abundances are binned in 2log bins.

distance, but also establishment and recruitment, which might
account for these discrepancies. Furthermore our estimates are in
line with clustering patterns (Seidler and Plotkin, 2006), and previous
estimates of migration of plots of tropical trees where plots contain-
ing a higher relative proportion of mammal-dispersed trees were
found to have higher migration (Jabot et al., 2008). Although wind
dispersed trees could disperse over long distances, the tight canopy
of tropical forests restricts air movement and generally abiotically
dispersed trees tend to disperse over shorter distances than animal
dispersed trees (Seidler and Plotkin, 2006; Beaudrot et al., 2013). The
difference in dispersal ability between the two guilds as inferred by
our model thus stresses that although empirical differences in
dispersal distance might be negligible for tropical tree species
(Muller-Landau et al., 2008), the combined effect of dispersal
distance, recruitment and establishment is not, and should be taken
into account in future studies, empirical or theoretical.

Our current subdivision in guilds has lumped together trees with
fairly different modes of dispersal; we have for instance lumped tree
species dispersed by birds as well as tree species dispersed by small
mammals in the same guild (biotically dispersed). We expect
however that these differences will be less important than the
differences between guilds, also because previous estimates of spatial
aggregation have shown that within guild differences are smaller
than between guild differences (Seidler and Plotkin, 2006). Extending
the sampling formula towards more than two guilds is fairly
straightforward, but it remains questionable whether this will yield
additional understanding of the system. We expect that a larger total
sample size is needed to reveal differences in dispersal ability with
an increased number of guilds.

An important question that automatically arises when looking
at guild structured data is whether the suggested dichotomy
introduces more information and structure to the data than a
random subdivision into two guilds would. This would quantify
the importance of including guild structure in the analysis of
community assembly. In our analysis we have tried to approach
this question by randomly assigning species to a guild, and
assessing which model best explains the (now randomized) data.
We found that after randomization the signal of guild structure
was almost always lost. This implies that the differences in
dispersal limitation we found are not a coincidence and that our
method is robust, that is, it is able to detect guild structure even in
the presence of other factors that always influence real commu-
nities, but not predict guild structure if such structure is absent.
Furthermore, randomizing the data requires making an a priori
choice about how to divide species over guilds (either 50/50 or
some other distribution). An alternative to randomly assigning
species to different guilds would be to randomly assign individuals
to different guilds (whilst keeping the total number of individuals
per guild constant). The number of individuals and number of
species are tightly linked however, and it appears non-trivial how
to correctly assign species to the randomized individuals without
assigning the same species label to individuals in both guilds.
Ultimately, validating the guild structure lies not so much in
finding a randomization that can test the added value of the
imposed guild structure, but in validating the ecological causes
that determine why species belong to different guilds.

In a recent paper, Humphreys and Barraclough (2014) also
considered a metacommunity divided into multiple “guilds”, and
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studied the effect of differences in dispersal. Dispersal in their
model is not defined as dispersal between a local community and
a metacommunity, but rather defined as the connectivity between
the two guilds - dispersal represents here the probability of a
species from one guild to disperse towards the other guild. This
would be analogous to a speciation event of a species from one
guild speciating into a species from another guild in our model.
Humpreys and Barraclough focus on the emergence of higher
Evolutionary Significant Units (hESU's) as the result of a lack of
dispersal between guilds and show that when the exchange of
species between guilds is low, this leads to a clear phylogenetic
pattern, where both guilds cluster into two distinct clades sepa-
rated by long external branches. In our sampling formula we have
chosen not to focus on speciation dynamics in the metacommu-
nity in favour of unravelling the effects of differences in dispersal.
It would be very interesting to look into a guild structured model
where both within-guild speciation (e.g. an individual of guild X
speciates into a new species belonging to guild X) and between-
guild speciation (e.g. an individual of guild X speciates into a new
species belonging to guild Y) is modelled. However, because this
would introduce at least three new parameters to estimate, we
doubt whether such a large number of parameters can be
accurately estimated using species abundance data and informa-
tion on guild structure; perhaps this requires the inclusion of
additional information about phylogeny (Jabot and Chave, 2009).

Our sampling formula resembles the multiple samples sam-
pling formula presented by Etienne (2007). That sampling formula
considers multiple local communities with independent migra-
tion, which all share the same metacommunity (with one single
estimate for ). If we interpret these different local communities as
different guilds, the multiple samples model closely resembles our
multiple guilds model. An important difference, however, is
hidden in the metacommunity structure. The multiple samples
metacommunity consists of one single metacommunity, without
any structure. Our multiple guilds metacommunity is explicitly
structured such that there are two separate guilds in the meta-
community that have independent dispersal towards the local
community. Due to their independent dispersal, guild sizes and
number of species in the local community can differ from each
other, whereas the linked local communities from the multiple
samples model all sample from the same species pool.

Our guilds sampling formula disentangles migration, dispersal
ability, and metacommunity abundance. In classical neutral theory,
dispersal limitation between the local and metacommunity is
governed by one single parameter, m (migration) (Hubbell,
2001). This can be interpreted as the combined effects of dispersal,
recruitment and establishment. In our sampling formula we
defined migration analogously, but here the dependence on the
relative size of the guild in the metacommunity becomes explicit:
m;=a;p; (in the neutral case there was only one guild with p=1)
Our newly defined dispersal ability «a still includes dispersal,
recruitment and establishment. Because we have redefined the
migration parameter, and have focused on estimating «, estimates
of our model cannot be directly compared with previously
obtained estimates of immigration (Etienne, 2007; Jabot and
Chave, 2009). Inferences with our DO model however, provide a
good reference point, as this model assumes no guild structure
and reduces to the Etienne Sampling Formula (Etienne, 2005) with
the migration parameter substituted by our new dispersal para-
meter and the relative metacommunity abundance.

In our model we assumed independence of migration and
speciation ability. We assumed that in the metacommunity there
are no differences between guilds with respect to speciation and
have only focused on differences of migration between the meta-
community and local community. If there are profound differences in
dispersal ability between guilds, however, we would expect this to

also influence the probability of speciation. This is a general problem
of two-scale neutral models (Leigh, 2007). From empirical data it
becomes clear that a lack of dispersal tends to lead to more patchy
distributions (Seidler and Plotkin, 2006) and can thus facilitate
geographical isolation of populations. As a result we expect an
interaction between speciation and dispersal ability, such that either
low dispersal is associated with high speciation rates due to the
patchy distribution of the population, or high dispersal is associated
with high speciation, as populations come in contact with novel
environments more often. The exact relationship between dispersal
and speciation will depend on the life-history of species. Further-
more, correctly implementing this interaction would require extend-
ing our current model towards a spatially explicit form. Rosindell and
Phillimore (2011) took a first step towards a further integration of
dispersal and speciation by identifying the difference between in situ
speciation on an island (cladogenesis) and speciation through drift
over time, where an immigrant on an island diverges from its
ancestor on the mainland (anagenesis). Future work could focus on
a more direct connection between dispersal and speciation and could
provide a more explicit link between spatially explicit processes
driving both dispersal limitation and speciation.

Our new sampling formula incorporates ecological reality into a
neutral approach of community assembly. It enhances our under-
standing and appreciation of the interplay between stochasticity,
dispersal and species-specific requirements that govern the pat-
terns we observe in ecological communities and the underlying
processes of community assembly.
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Appendix A. Deriving the sampling formula
A.l. One-guild sampling formula

First, we sketch a derivation of the one-guild sampling
formula. We start by deriving the abundance distribution of the
local community in Hubbell's neutral community model. Com-
munity size J is fixed. Individuals die at a constant rate and are
replaced with probability 1—m by offspring from within the
community, or with probability m by an immigrant from outside
the community. For the time being, we assume the composition
of the pool of immigrants (that is, the metacommunity) to be
fixed. We denote the relative abundances in the metacommunity
by p1, p2 ... ps and the absolute abundances in the community by
Ny, N5... Ns. Note that

s s
> pi=1and > N;i=]

i=1 i=1
Then, using the fundamental dispersal number I= m(J—1)/
(1—m), the stationary distribution of the community abundances is

=i JU Apow, ---UPs)ng
P(N p’”) Ty NiL.Ng!

(S1)
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where the Pochhammer symbol (x), is defined as
‘y .
(y = I1 Ge+i=1)
ie

Eq. (S1) describes the abundance distribution in the local community.
It can also be used to obtain the abundance distribution of the
metacommunity. To do so, the migration probability m must be
interpreted as the speciation probability v, the metacom-
munity size is denoted by Jy; and the fundamental dispersal number
I is replaced by the fundamental biodiversity number 0 = v(J,;—1)/
1—v. The abundance distribution of the metacommunity is used to
integrate out the relative abundances pj,.., ps in the abundance
distribution of the local community.

Etienne (2005) used Eq. (S1) to derive the sampling formula of
Hubbell's neutral model, that is, the probability that a sample
taken from Hubbell's neutral community has abundance vector D.
The sample is taken from the local community, described by
parameters I and J, while the metacommunity abundance dis-
tribution is described by parameter 6. The sampling formula is
given by

) J! ©O° (4 ) U
P(D|O.L] )= ———— K{D,A )= S2
( “ J) is= 1]:'H§=1(sj!) Dy A—S( , (G)A t2

where D is a vector of the number of individuals per species, S is
the number of species in vector D and ] is the total number of
individuals in vector D. K(D,A) is defined as follows:

= ) S 5(ny,a)s(a;, 1)
I<<D,A> D= Z il:[] 4%(1;’1)'
{ar,..asl y o a=Ay

where n; is the number of individuals of species i and s(n;, a;) is
the unsigned Stirling number of the first kind.

A.2. Two-guild sampling formula

Next, we derive the two-guilds sampling formula. We start by
deriving the abundance distribution of the local community.
Species belong to one of two guilds X and Y with different
dispersal ability ax and ay. Total community size J is a fixed
parameter, but guild sizes Jx and Jy are dynamic variables. The
species relative abundances in the metacommunity are px; (i=1,
...,Sx) for guild X and py; (i=1,...,Sy) for guild Y. For the time being,
we assume the relative abundances of the metacommunity to be
fixed. The guild relative abundances are

Sx Sy
Dx = Z px; and py = Z Py; With py+ py=1
i=1 i=1
We denote the local community abundances by Nx; (i=1,...,Sx)
for guild X and by Ny; (i=1,...,Sy) for guild Y so that

Sx Sy
Jx=">_ Nxiand Jy= > Ny; with Jy+ Jy=]
i=1 i=1
As in the case of a single guild, dead individuals are replaced
with probability 1—m by local offspring and with probability m by
immigration. In contrast to the case of a single guild, the immi-
gration probability of a specific species is not only determined by
its metacommunity abundance, but also by the guild it belongs to.
In particular,
Immigration by species i of guild X has probability axpx;
Immigration by species i of guild Y has probability aypy;
so that

Sx Sy
m= Z axPxi+ Z QyPy; = AxPx +AyPy
i=1 i=1

We use Eq. (S1) to compute the stationary community

composition. To do so we construct a virtual metacommunity
with relative abundances.
Species i of guild X has relative abundance axpy;/(axpx + aypy)
Species i of guild Y has relative abundance aypy ;/(axpx +aypy)
We then consider neutral immigration from this virtual meta-
community. The total immigration probability is equal to
axpx +aypy. Explicitly,
Immigration by species i of guild X has probability

QAxDx i QAxDx i
" = (AxPx + AyPy)—————— = AxPx
axDx £ avDy (axpx+aypy) Dy + ArPy xPx.i
Immigration by species i of guild Y has probability
QyDy i QyDy i
— = (axpx+a ———— = QyDy;
axPx +AyDy (axpx+aypy) axPx +AyDy vPyi

Comparing these immigration probabilities with the previous
ones, we see that neutral immigration from this virtual metacom-
munity is equivalent with the original immigration process. There-
fore, we can apply Eq. (S1) to the virtual metacommunity to obtain
the abundance distribution of the two-guild local community,

P(NX.NY\EX,Ey,aX, ay,u)

_Jy Ulaxpxa/ (axpx+avpy)))y,, - (H(axpxs,/ (axpx +avpy)) )y,

Ty Nyx1!...Nxs!
(I(aypy.1/(axpx+aypy))) Ny (I(aypys,/ (axpx+avpy)) )Ny,sy
* Nyq!...Nygs!
($3)
Introducing the guild fundamental dispersal numbers
= axpPx I— aXpXU_l) (S4A)
axpx+aypy  1—axpx—aypy
y = QyDy = (xYpYU_l) (S4B)
axpx+aypy  1—axpx—aypy
we get

P<N\X,N\Y|§X,§Y’(XX, avJJ)
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- Iy Nx1!...Nxs!
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X(IY)]Y Nyi!...Nys!
In the last equality, the two last lines give the abundance
distribution of the species belonging to guild X and guild Y,
respectively. Both are instances of the one-guild formula (S1).

Hence, the remaining factors (first line of the last equality) give the
probability distribution of the guild sizes Jx and Jy,

Nxsy

X

Nys,

JU @y dy)y,

PUsJy I Iy, J) = 3 Xl S6
(]XAgyal rxeszlll{,) Ux+Iv),  JxYUy! (56)
P<ﬁx,ﬁy|5x,ﬁy,ax,ay,1,]>
_ N ﬁx N 53(
=P(Jx.Jy|Ix.Iy.J)P| Nx|=% Ix.Jx | P| Ny|=5 Iy Jy (§7)
DPx by

The product structure shows that, given guild sizes Jx and Jy and
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parameters Iy and Iy, the abundance distributions of guilds X and Y
are independent.

Eq. (S7) describes the abundance distribution in the local
community. In particular, the product structure of Eq. (S7) carries
over to the sampling formula for dispersal-limited sample from
the local community for given values of the metacommunity
relative abundances of the two guilds,

P<DX,DYI 0, IxJYJ) = P(Jx,]ylliVJ)P<Dx|9x,1x,]x>P<[jyl 9YJYJy>
(S8)

which is Eq. (2) in the main text.

To obtain the full sampling formula, we proceed as in the
derivation of the one-guild sampling formula. We integrate over all
possible values of the relative abundances of the two guilds, weighted
by the probability distribution of the guilds' relative abundances in the
metacommunity. This probability distribution is obtained by lifting Eq.
(S7) from the local community to the metacommunity. To do so we
make the substitutions Jx—Jyx. Jy—Juy, J—Ju, Ix—0x and
Iy — 6y, analogously to the case of a single guild. As a result, given
the relative abundances px and py of guilds X and Y, the metacommu-
nity abundance distributions of the guilds are independent. To
compute the distribution of px and py we have

_ Iu! (HX)JMX (QY)JM,Y
T (Ox+0y),  JuxYmy!

P(Jpx-Jmy! O, 0v.]m)

or

It 0x,,0v),
P(mx|Ox.0v.Ju) — Ox+0y), Jux!Um—Imx)!

(59)

Then we take the coupled limit Jy x—occ and Jy —oo with
Jmx =PpxJu- That is, we transform the discrete probability distribu-
tion P(Jy;x) of absolute abundances to a continuous distribution
p(py) of relative abundances. We have

+1 a+(1/In) 1
Y ) = [ pwwdpex e
.]M Ja ]M

P(Jyx=aly) :P(%gpx<

such that
p(Px16x,0y.Jm) = JLiinw]MP(pijlex’Hy’]M)

Unconditioned sampling formula
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_ llm_’ .IM' (GX)PX]M(HY)l —PxJu
" au—es M (Ox+0y);, Dx ) (1= P!

I(0x+0y) .. Ju! I (pxJm+0x) T((1=py)ly+6y)

= — - lim
OO Ou—e " T (Jy+6x+0y)  (DxJu)! (1—pxJm)!
Now we apply three times the formula,
lim 0 _
Looo [*71])

which can be proved using Stirling's approximation. Hence,

I(0x+6y) . 1 o -
P10 ) = S ™ (=D

_ I'(6x+6y) g 1 ot v I !
SO0 @)X TR Mg
I (Ox+0y) g 1

= Ut %) Oy —1
T (0T (0v)PX

(1-px) (510)
Eq. (S10) holds for a speciation process in which a fraction
Ox/(Ox+0y) of speciation events gives rise to species of guild X
and a fraction 6y/(@x+6y) of speciation events gives rise to
species of guild Y. In the main text we make the additional
assumption that these fractions are equal, that is, Oy = 0y = 0/2
With this assumption, Eq. (S10) reduces to Eq. (4) in the main text.

Combining Eqs. (S8) and (S10), and integrating over all possible
values of px gives us the full sampling formula (Eq. (5) in the main
text):

P<DX,DY|0»UXJ’Y) = /01 P(liyl’x,ly,])P(Dxlex,lx,]x)P<Dvl9YJYJY)P(PX\9)(1PX
(S11)

A.3. Conditioning on guild size

Guild sizes Jx and Jy are central to Eq. (S11) and we therefore
expect that differences in guild size might disproportionally affect
parameter estimates. To see to which extent parameter estimates
are influenced by differences in guild size, rather than differences
in dispersal ability between guilds, we plotted the ratio of guild
sizes versus the ratio of dispersal ability estimates obtained using
Eq. (S8) (we used parameter estimates obtained using the proce-
dure described under the “model selection” part of the methods

Conditioned sampling formula
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Fig. A1. Ratio of dispersal abilities of both guilds, versus the ratio of individuals in these guilds. Left hand plot shows ratios obtained using the unconditioned sampling
formula, right hand plot shows ratios obtained using the conditioned sampling formula. For the unconditioned sampling formula, a clear relation is found between the ratio
of dispersal abilities and ratio of guild sizes (R*=0.95, slope=0.927, p < 2e — 16). Using the conditioned sampling formula, this relationship vanishes however (R*=0.00276,

p=0.115).
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Table A1

Parameter estimates for the six different censuses of BCI, including both found optima for the DO model. Guild X represents tree species with biotic dispersal, and guild Y
represents tree species with abiotic dispersal. The p-value of the Neutrality test is reported in the last column.

Census General statistics Model Parameter estimates Model fit p-value
J Jx Iy Sx Sy 0 ax ay LL AIC AAIC AICW
1982 20914 18,321 2593 196 46 DO 111.04 0.0041 0.0041 —398.65 801.31 55.72 0 0.00
1982 DO 33.663 0.0515 0.0515 —398.24 800.48 54.89 0 0.02
1982 D1 255.64 0.0047 0.0008 —369.79 745.58 0 0.87 0.58
1982 D1 55.77 1.0000 0.0006 —371.70 749.39 3.81 0.13 0.91
1985 20,742 18,203 2539 197 44 DO 32.83 0.0569 0.0569 —400.20 804.41 59.00 0 0.00
1985 DO 115.51 0.0040 0.0040 —400.70 805.40 59.98 0 0.00
1985 D1 56.00 1.0000 0.0006 —372.36 750.72 5.31 0.07 0.90
1985 D1 285.24 0.0045 0.0008 —369.71 745.41 0 0.93 0.28
1990 21,253 18,641 2612 189 42 DO 3110 0.0541 0.0541 —392.60 789.21 50.93 0 0.05
1990 DO 82.52 0.0049 0.0049 —395.84 795.67 57.39 0 0.06
1990 D1 53.45 1.0000 0.0006 —366.14 738.28 0 0.72 0.87
1990 D1 198.29 0.0050 0.0008 —367.06 740.12 1.84 0.28 0.59
1995 21,460 18,812 2648 188 41 DO 30.90 0.0521 0.0521 —403.60 811.19 52.16 0 0.00
1995 DO 81.68 0.0048 0.0048 —406.48 816.97 57.94 0 0.00
1995 D1 53.19 1.0000 0.0005 —376.51 759.03 0 0.64 0.66
1995 D1 197.21 0.0049 0.0007 —377.08 760.15 112 0.36 0.17
2000 21,205 18,607 2598 187 42 DO 30.44 0.0567 0.0567 —392.25 788.50 49.25 0 0.04
2000 DO 81.04 0.0050 0.0050 —395.68 795.35 56.11 0 0.03
2000 D1 52.86 1.0000 0.0006 —366.60 739.25 0 0.72 0.93
2000 D1 189.58 0.0051 0.0008 —367.59 741.18 192 0.28 0.53
2005 20,860 18,321 2539 188 43 DO 30.25 0.0630 0.0630 —390.61 785.22 52.38 0 0.04
2005 DO 104.84 0.0040 0.0040 —392.17 788.34 55.50 0 0.01
2005 D1 53.32 1.0000 0.0006 —365.05 736.11 3.26 0.16 0.97
2005 D1 232.01 0.0046 0.0008 —363.42 732.85 0 0.84 0.48
section). Only the parameter estimate of the model with the References

highest AIC weight was taken into consideration. We found a
positive relation between the ratio of dispersal abilities of both
guilds and the ratio between guild sizes (R*=0.95, slope=0.927,
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would be to condition our sampling formula on guild size.

To condition on guild size, we can use the likelihood of having
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JU @Ay,

PUdvibevd) =g =T
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1
o Ux)y Ay
P 0,Ix,Iy) = — X ¥ 0)d S12
Ux-Jy16,Ix, Iy) /0 Ux+1y) Iy P(px|0) dpx (512)
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significant correlation between the ratio of dispersal abilities and the
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