
Available online at www.sciencedirect.com
www.elsevier.com/locate/mbs

Mathematical Biosciences 212 (2008) 88–98
Dynamics of neutral biodiversity

Dimitri Vanpeteghem a, Olivier Zemb a,b, Bart Haegeman a,c,*

a INRA, UR50, Laboratoire de Biotechnologie de l’Environnement, Avenue des Etangs, F-11100 Narbonne, France
b Biotechnology and Biomolecular Sciences, CMB, University of New South Wales, Sydney, New South Wales 2052, Australia
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Abstract

Hubbell’s neutral model has become a major paradigm in ecology. Whereas the steady-state structure is well understood, results about the
dynamical aspects of the model are scarce. Here we derive dynamical equations for the Simpson diversity index. Both mean and variance of
the diversity are proven to satisfy stable linear system dynamics. We show that in the stationary limit we indeed recover previous results, and
we supplement this with numerical simulations to validate the dynamical part of our analytical computations. These findings are especially
relevant for experiments in microbial ecology, where the Simpson diversity index can be accurately measured as a function of time.
� 2008 Elsevier Inc. All rights reserved.
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1. Introduction

Neutral community theory as proposed by Hubbell [1]
follows a stochastic approach to model ecological assem-
blages. It describes the species abundance dynamics of a
local community in contact with a much larger regional
community. When an individual in the local community
dies, it is replaced by the offspring of another local individ-
ual, or by an immigrant of the regional community. The
number of individuals in the local community remains
therefore constant over time, which is called the zero-sum
assumption. The neutrality assumption, on the other hand,
states that all individuals, regardless of the species they
belong to, behave identically under identical circumstances.

Although these assumptions, and neutrality in particu-
lar, are outrageous from a biological viewpoint, the model
predicts stationary species abundance distributions
remarkably close to those observed in nature [2–4]. The
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neutral steady-state fits experimental data as accurately
as most popular ecological distributions, e.g. the lognormal
one [3,5]. However, neutral theory has the advantage to
provide a dynamical framework, with a clear interpretation
of the model parameters.

The dynamics of the neutral model have been considered
in a limited number of studies. When the number of indi-
viduals in the local community is large, a continuous
approximation is often justified [6]. This approach has been
used to compute the species extinction-time distribution [7],
or to study some dynamical aspects at or close to the sta-
tionary state [8]. In most of the papers dealing with neutral
dynamics however, the model equations are used exclu-
sively to study stationary properties.

Although biodiversity is a central notion in the neutral
theory, its dynamics have not been investigated as such. It
has been noted that the Simpson diversity index [9] enters
the neutral theory in a natural way. Indeed, the average
Simpson diversity in the regional community stationary state
is directly related to the so-called fundamental biodiversity
parameter [1]. Steady-state fluctuations have been computed
[10,11] and also a dynamical equation for the average Simp-
son diversity in the regional community was reported [1,5].
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In the present paper, we attempt a rigorous derivation of
the biodiversity dynamics for the full neutral model, i.e.
without a continuous approximation. We posit the dynam-
ical description of Hubbell’s neutral model for the local
community with a given species abundance distribution
for the regional community. It is a master equation for
the probability distribution on the abundances of all spe-
cies. We then derive dynamical equations for the average
Simpson diversity index and its fluctuations. Comparison
with steady-state values and numerical simulations both
validate our results. Finally, we argue how this work pro-
vides a link between neutral theory and microbial ecology.

2. Neutral model

Neutral community theory starts out by separating the
local from the regional community. On the timescale of the
local community, which is the one of interest to us, the regio-
nal community does not evolve. It consists of N species each
with a fixed abundance. The regional community is assumed
to be so large that only relative abundances are of impor-
tance. We denote the relative abundance of species k in the
regional community by pk, for k ¼ 1; 2; . . . ;N . We also intro-
duce the relative abundance vector

~p ¼ ½p1 p2 . . . pN �:
Note that

P
kpk ¼ 1.

The local community consists of X individuals, all
belonging to one of the N species present in the regional
community. We denote the absolute abundance of species
k in the local community by X k, an integer possibly zero.
The absolute abundance vector

~X ¼ ½X 1 X 2 . . . X N �
sums up to X, thus

P
kX k ¼ X .

The dynamics in the local community is triggered by death
events. The mortality rate is denoted by l. Thus, the proba-
bility that in the interval ½t; t þ �� one of the X individuals
dies, is given by l�þ oð�Þ as �! 0. In that case, the death
is immediately compensated, either by the immigration of
a new individual from the regional community (with proba-
bility m), or by the reproduction of some other individual in
the local community (with probability 1� m). There are no
other events in the local community apart from the two
described: death followed by immigration and death fol-
lowed by reproduction. As a consequence, the number of
individuals in the local community remains constant, equal
to X. This is the zero-sum assumption.

This formulation of Hubbell’s model leads to a continu-
ous-time Markov process. The rate for a transition that
decreases the abundance of species i by one, and increases
the abundance of species j 6¼ i by one. This rate is given by

RðX i; pj;X jÞ ¼ l
X i

X
mpj þ ð1� mÞ X j

X � 1

� �
:

The probability that an individual of species i dies, is pro-
portional to its abundance X i. If the dead individual is re-
placed by an individual of the regional community, the
probability that this new individual belongs to species j,
equals the regional abundance pj. Otherwise, if the dead
individual is replaced by the offspring of an individual in
the local community, the probability that this new individ-
ual belongs to species j, is proportional to its abundance
X j. As all these probabilities are simply proportional to
the species abundance in the local or regional community,
no differences are assumed between individuals of different
species. This is the neutrality assumption.

By summing over all possible events,X
i;j

i 6¼j

RðX i; pj;X jÞ þ
X

i

RðX i; pi;X i � 1Þ ¼ l;

we retrieve the mortality rate l. The second term in the left-
hand side corresponds to events where the species of the
replacing individual is the same as that of the dead individ-
ual. Such events do not change the abundance vector ~X .

As our model is stochastic, we need some notation to
deal with randomness. Bold symbols are used for random
variables. For instance, the random variable corresponding
to the abundance of species k is denoted by Xk, and the
vector containing the N random species abundances by
~X . To simplify notation, we do not distinguish consistently
a random variable from its realisation. For instance, we
denote the probability that ~X takes the value ~X by Pð~X Þ.
Marginal probability distributions are denoted by super-
scripts. For instance, PiðX iÞ stands for the probability dis-
tribution restricted to species i. Similarly, we use PijðX i;X jÞ
and PijkðX i;X j;X kÞ for the bivariate and trivariate
distributions.

The master equation for ~X reads

d

dt
Pð~X Þ ¼

X
i;j

i6¼j

RðX i þ 1; pj;X j � 1ÞPð~X þ~ei �~ejÞ

�
X

i;j
i6¼j

RðX i; pj;X jÞPð~X Þ; ð1Þ

where we used basis vectors~ei with components ð~eiÞj ¼ dij,
the Kronecker delta. The special structure of the neutral
model implies the existence of an autonomous master
equation for the abundance Xk,

d

dt
PkðX kÞ ¼ RðX k þ 1; 1� pk;X � X k � 1ÞPkðX k þ 1Þ

þ RðX � X k þ 1; pk;X k � 1ÞPkðX k � 1Þ
� RðX k; 1� pk;X � X kÞPkðX kÞ
� RðX � X k; pk;X kÞPkðX kÞ: ð2Þ

See Appendix A for the derivation. Most papers take (2) as
the starting point of their analysis. However, these equa-
tions do not form a complete description of the model.
For most computations, e.g. the stationary distribution
or the mean Simpson diversity, the marginals on one vari-
able are sufficient. It will turn out that computing the var-
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iance of the Simpson diversity requires also the bivariate
distributions.

3. Simpson diversity: analytics

The most obvious way to quantify diversity is the num-
ber of species present in the community. More elaborate
diversity notions have been proposed, taking species abun-
dances into account. The Simpson concentration index [9]
is defined as the probability that two individuals drawn
randomly from the community belong to the same species.
If the individuals are drawn with replacement, this leads to

Z1 ¼
1

X 2

XN

k¼1

X 2
k :

Without replacement, one obtains

Z2 ¼
1

X ðX � 1Þ
XN

k¼1

X kðX k � 1Þ:

If the number of individuals X is large, as is usually the
case, Z1 � Z2.

The larger the Simpson concentration, the smaller the
diversity in the community. It is therefore customary to
apply a decreasing transformation to the concentration
index, to get diversity indices like 1� Z1, 1=Z1 or � ln Z1.
In the present context, the Simpson concentration is a ran-
dom variable Z1 or Z2. We derive the dynamics of its mean
and variance.

3.1. Mean Simpson diversity

Under neutral dynamics, the equation for the expected
value of some function f ðXkÞ of the abundance Xk reads,

d

dt
E½f ðXkÞ�

¼ E½ðf ðXk � 1Þ � f ðXkÞÞRðXk; 1� pk;X � XkÞ�
þ E½ðf ðXk þ 1Þ � f ðXkÞÞRðX � Xk; pk;XkÞ�: ð3Þ

See Appendix B for the derivation. Note that this equation
only depends on Xk and not on the other abundances.

Eq. (3) allows to compute the dynamics of the momenta
EX a

k , see Appendix C and Eqs. (14)–(17). Note that the
dynamical equation for EX a

k does not contain powers of
order higher than a. This leads to autonomous systems of
equations describing the dynamics of these momenta. For
an alternative derivation using characteristic functions,
see Appendix D.

The dynamics of the mean Simpson concentration can
be obtained from (14) and (15). Indeed,

EZ1 ¼
1

X 2
C0

2 and EZ2 ¼
1

X ðX � 1Þ ðC
0
2 � X Þ; ð4Þ

where we introduced the notation

Ca
a ¼

X
k

pa
kEXa

k :
Summing Eq. (15) over all k, we obtain

d

dt
C0

2 ¼ �2l
m
X
þ 1� m

X ðX � 1Þ

� �
C0

2 þ 2l m� m
X

� �
C1

1

þ 2l mþ ð1� mÞX
X � 1

� �
: ð5Þ

This equation is not autonomous because C1
1 appears in it.

Multiplying (14) by pk and summing over all k, we get

d

dt
C1

1 ¼ �l
m
X

C1
1 þ lmC2

0: ð6Þ

Eqs. (5) and (6) form an autonomous dynamical system.
The dynamics are linear with eigenvalues

�l
m
X

and � 2l
m
X
þ 1� m

X ðX � 1Þ

� �
:

They are strictly negative, establishing exponential stabil-
ity. One can go a step further and combine (5) and (6) to
obtain a second order differential equation in C0

2 alone.

3.2. Variance of Simpson diversity

The dynamics of the mean Simpson diversity has been
studied previously [1,5]. It should not be overlooked
however, that the mean of a stochastic variable alone
does not have much meaning. For all we know, the var-
iance might be so large as to make the mean virtually
useless. Even worse, the variance might go to infinity as
time increases. In this section we ascertain that the vari-
ance of the Simpson concentration Z1 or Z2 does not
blow up.

To compute the variance, we need the dynamical equa-
tion for the expected value of f ðXk;X lÞ,
d

dt
E½f ðXk;X lÞ�

¼ E½ðf ðXk�1;X lÞ� f ðX k;X lÞÞ
�RðXk;1�pk�pl; X �Xk�X lÞ�
þE½ðf ðXkþ1;X lÞ� f ðX k;X lÞÞ
�RðX �Xk�X l;pk;XkÞ�
þE½ðf ðXk ;X l�1Þ� f ðX k;X lÞÞ
�RðX l;1�pk�pl; X �Xk�X lÞ�
þE½ðf ðXk ;X lþ1Þ� f ðX k;X lÞÞ
�RðX �Xk�X l;pl;X lÞ�
þE½ðf ðXk�1;X lþ1Þ� f ðXk;X lÞÞRðXk;pl;X lÞ�
þE½ðf ðXkþ1;X l�1Þ� f ðXk;X lÞÞRðX l;pk;XkÞ� ð7Þ

The derivation of this formula goes along the lines of the
derivation of formula (3).

Eq. (7) allows to derive the dynamical equations for the
momenta EX a

kX b
l , see Appendix C and Eqs. (18)–(20).

Again, the dynamics of EX a
kX b

l are expressed in terms of
lower order momenta, leading to autonomous systems of
equations. Characteristic functions can be used to obtain
the same equations, see Appendix D.
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The variance of the Simpson concentration is

Var Z1 ¼
C0

4 þ C00
22 � ðC0

2Þ
2

X 4
and

Var Z2 ¼
C0

4 þ C00
22 � ðC0

2Þ
2

X 2ðX � 1Þ2
: ð8Þ

Here we used the notation

Cab
ab ¼

X
k;l
k 6¼l

pa
kpb

l EXa
kXb

l :

Note that Cab
ab ¼ Cba

ba .
The dynamics of the variance can thus be computed

from the dynamics of C0
2, C0

4 and C00
22. Dynamical equations

for these quantities can be derived by combining Eqs. (14)–
(17) and Eqs. (18)–(20).

The dynamics of C0
4 is a 9th order linear system. In terms

of the vector

v1 ¼ C0
4 C1

3 C0
3 C2

2 C1
2 C0

2 C3
1 C2

1 C1
1;

� �
it reads

_v1 ¼ A1v1 þ w1; ð9Þ
where A1 is the 9-dimensional matrix,

A1¼

4a3 4b3 6c2 0 6b0 4a1=2 0 0 4b1=2

0 3a2 0 3b2 3c2 0 0 3b0 a0

0 0 3a2 0 3b2 3c2 0 0 3b0

0 0 0 2a1 0 0 2b1 c2 0

0 0 0 0 2a1 0 0 2b1 c2

0 0 0 0 0 2a1 0 0 2b1

0 0 0 0 0 0 a0 0 0

0 0 0 0 0 0 0 a0 0

0 0 0 0 0 0 0 0 a0

2
66666666666666664

3
77777777777777775

;

and w1 is the 9-dimensional vector,

w1 ¼ 2Xc1 lmC2
0 0 lmC3

0 lmC2
0 2Xc1 lmC4

0 lmC3
0 lmC2

0

� �
;

with

aa ¼ �
lm
X
� a

lð1� mÞ
X ðX � 1Þ

ba ¼ lm� a
lm
X

ca ¼
lm
X
þ a

lð1� mÞ
X � 1

:

The eigenvalues of the system dynamics are 4a3, 3a2 (with
degeneracy 2), 2a1 (with degeneracy 3) and a0 (with degen-
eracy 3). They are all strictly negative, implying exponen-
tial stability.

The dynamics of C00
22 is a 12th order linear system. In

terms of the vector

v2 ¼ C00
22 C01

21 C00
21 C02

20 C01
20 C11

11 C10
11 C00

11 C12
10 C11

10 C02
10 C01

10

� �
;

it reads
_v2 ¼ A2v2 þ w2; ð10Þ

where A2 is the 12-dimensional matrix,

A2¼

4a3 4b3 2c2 0 2b2 0 4c0 2d 0 0 0 2c0

0 3a2 0 b2 0 2b2 c2 0 0 b1 c0 0

0 0 3a2 0 b2 0 2b2 c2 0 0 0 b0

0 0 0 2a1 0 0 0 0 2b1 0 c2 0

0 0 0 0 2a1 0 0 0 0 2b1 0 c2

0 0 0 0 0 2a1 0 0 2b1 0 0 0

0 0 0 0 0 0 2a1 0 0 b1 b1 0

0 0 0 0 0 0 0 2a1 0 0 0 2b1

0 0 0 0 0 0 0 0 a0 0 0 0

0 0 0 0 0 0 0 0 0 a0 0 0

0 0 0 0 0 0 0 0 0 0 a0 0

0 0 0 0 0 0 0 0 0 0 0 a0

2
6666666666666666666666664

3
7777777777777777777777775

;

and w2 the 12-dimensional vector,

w2¼ 0 0 0 lmC21
00 lmC11

00 0 0 0 lmC22
00 lmC21

00 lmC21
00 lmC11

00

� �
;

with

d ¼ lð1� mÞ
X ðX � 1Þ :

The eigenvalues of the system dynamics are 4a3, 3a2

(degeneracy 2), 2a1 (degeneracy 5) and a0 (degeneracy
4). They are all strictly negative, proving exponential
stability.

As a result, we have obtained dynamical equations for
C0

2 (Eqs. (5) and (6)), for C0
4 (Eq. (9)) and for C00

22 (Eq.
(10)). They all satisfy stable linear dynamics, implying that
the variance for the Simpson diversity (8) will reach a finite
stationary value.
4. Simpson diversity: numerics

The analytical results obtained in the previous section
are validated in two different ways. First, we simulate the
full stochastic model, and compare simulated trajectories
with predicted mean and variance. Next, steady-state val-
ues of our dynamical equations are checked against previ-
ously published formulas.

4.1. Simulations

As long as the number of individuals X is not too large,
the neutral model can be simulated directly. We generated
trajectories for a system with X ¼ 104 individuals and
N ¼ 102 species. The abundance pk in the regional commu-
nity were taken proportional to 1=k. The immigration
probability was m ¼ 5 10�3, and the mortality rate, which
fixes the timescale, l ¼ 1. From the generated abundance
vectors ~X , the Simpson concentration Z1 was computed.
For the same parameters, we integrated the dynamical
equations for C0

2, C0
4 and C00

22, see Eqs. (5), (6), (9) and
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(10). The solutions were then combined in Eqs. (4) and (8)
to obtain EZ1 and VarZ1.

Fig. 1 compares the simulated Simpson diversity 1� Z1

with our analytical computations. The left part compares
one randomly generated trajectory with three reference
curves:

E½1� Z1� ¼ 1� EZ1;

E½1� Z1� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var½1� Z1�

p
¼ 1� EZ1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarZ1

p
:

In the right part, the same three reference curves were esti-
mated based on 100 simulated trajectories. The agreement
between analytical and numerical computations is
excellent.

4.2. Steady-state

The stationary composition of the local community
under neutral dynamics is explicitly known [12]. Given
the relative abundance vector ~p for the regional commu-
nity, the probability distribution for absolute abundance
vector ~X for the local community is

lim
t!1

Pð~X Þ ¼
X

X 1 . . . X N

� �QN
k¼1ðIpkÞX k

ðIÞX
; ð11Þ

with

ðaÞn ¼ aðaþ 1Þ . . . ðaþ n� 1Þ and

I ¼ m
1� m

ðX � 1Þ:

This distribution allows to compute the stationary value of
EXk,

lim
t!1

EXk ¼ Xpk; ð12Þ

which is identical to the equilibrium of (14). Similarly, the
stationary value of EX2

k from the distribution (11) is
0
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Fig. 1. Dynamics of Simpson diversity. Left: Simulated trajectory compared
diversity 1� Z1. Right: Mean and standard deviation of Simpson diversity 1
X ¼ 104, N ¼ 100, m ¼ 5 10�3, l ¼ 1 and regional species abundances pk are pr
all species having equal abundance. Full line: expected values; dashed line: me
lim
t!1

EX2
k ¼ X ðX � 1Þpk

Ipk þ 1

I þ 1
þ Xpk

¼ mX ðX � 1Þ2

mX þ 1� 2m
p2

k þ
X ðX � mÞ

mX þ 1� 2m
pk; ð13Þ

which is identical to the equilibrium of (15). This procedure
can be continued to check the other stationary moments of
Eqs. (16)–(20).

Combining (12) and (13),

VarXk ¼ EX2
k � ðEXkÞ2 ¼ pkð1� pkÞ

X ðX þ IÞ
I þ 1

;

which shows that the fluctuations decrease monotonically
with I and thus with m. Indeed, when the local community
is strongly isolated from the regional community, the spe-
cies abundance can fluctuate wildly. It is easy to check that

Var
Xk

X
¼ pkð1� pkÞ when m! 0;

i.e. the relative abundance in the local community behaves
like a Bernoulli random variable. With strong immigration
from the regional community, the fluctuations are

Var
Xk

X
¼ pkð1� pkÞ

X
when m! 1;

i.e. the relative abundance in the local community becomes
sharply peaked for large X.

Eq. (13) also allows to compute the stationary value for
the Simpson concentration Z1,

lim
t!1

EZ1 ¼
mðX � 1Þ2

X ðmX þ 1� 2mÞ
X

k

p2
k þ

X � m
X ðmX þ 1� 2mÞ :

This agrees with the known stationary value for the Simp-
son concentration Z2 [13],
0
0.88

0.92

0.96

1
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S
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with analytical predictions of mean and standard deviation of Simpson
� Z1 estimated from 100 simulated trajectories. The parameters used are
oportional to 1=k. The initial condition was taken to be deterministic, with
ans � standard deviation.
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lim
t!1

EZ2 ¼ 1� I
I þ 1

1�
X

k

p2
k

 !

¼ mðX � 1Þ
mX þ 1� 2m

X
k

p2
k þ

1� m
mX þ 1� 2m

:

Fig. 2 compares the variability of species abundances and
Simpson diversity. We took a regional community with
N ¼ 106 species with abundances pk proportional to 1=k.
The local community consists of X ¼ 108 individuals,
which is too large to simulate the model directly. The mor-
tality rate is l ¼ 1, whereas immigration probabilities
m ¼ 10�6, m ¼ 10�4 and m ¼ 10�2 were considered. The
top row shows three species abundances curves as a func-
tion of species index:

E
Xk

X
; E

Xk

X
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var

Xk

X

r
:

The bottom row shows three Simpson diversity curves as a
function of time:

EZ1; EZ1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarZ1

p
:

Both sets of curves are shown on a logarithmic scale. As
noted before, the variability decreases as the immigration
probability increases. The variability for the Simpson
diversity is systematically smaller than for the species abun-
dances. Indeed, as all species contribute to the Simpson
diversity, species abundance variabilities are averaged out.
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Fig. 2. Variability of species abundances and Simpson diversity. Top: Station
deviation, as a function of species index. Bottom: Mean and standard deviation
X ¼ 108, N ¼ 106, l ¼ 1 and regional species abundances pk are proportional to
k ¼ 1 present. Left: immigration probability m ¼ 10�6. Middle: m ¼ 10�4. Ri
deviation.
5. Discussion

We have derived the dynamics of the biodiversity for a
neutral local community. The biodiversity was quantified
via the Simpson diversity index, which compared to other
diversity measures is relatively easy to deal with analytically.
Indeed, it has been noted previously [1,5,11] that the Simp-
son diversity is somehow compatible with the neutral theory.
We also computed the variance on the expected dynamics of
the Simpson diversity. In particular, for a large local commu-
nity that has sufficient contact with the regional community
(m not too small), the diversity fluctuations were found to be
small.

One can expect that the larger the local community, the
higher the ratio of dead individuals replaced by local off-
spring than by regional immigration, and thus the smaller
the immigration probability m. For a given experimental
system, delimiting an appropriate local community for the-
oretical analysis, and so fixing parameters X, m and l,
might be a delicate issue. To fix ideas, parameter values
used in Fig. 1 could correspond to a community of
macro-organisms, the tropical tree forest being the stan-
dard example in neutral theory. The parameters used in
Fig. 2 rather suggest a microbial community.

To measure the diversity of a forest, one has to collect
species data of individual trees, and use this to estimate,
e.g. the Simpson diversity index. Linking experiment and
theory proceeds therefore most easily via species abun-
–8

–4

0

6

0
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0 6
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m=10–2

me

0
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Time
1013 10110

ary species abundances in local community, together with their standard
of Simpson diversity � ln Z1 as a function of time. The parameters used are

1=k. The initial condition was taken to be deterministic, with only species
ght: m ¼ 10�2. Full line: expected values; dashed line: means � standard
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dance data, rather than making a detour via diversity. For
microbial systems, however, this detour seems unavoid-
able. Indeed, due to the huge microbial diversity, the acqui-
sition of accurate species abundance data is very difficult.
Even a rough estimation is expensive and time consuming.
Fortunately, cheap and fast DNA-based techniques exist
that allow to assess diversity directly, without having to
analyse individual microbes. Molecular fingerprinting tech-
niques, for example, encode rather accurately the Simpson
diversity [14].

More generally, it has been suggested that microbial com-
munities could be more appropriate than traditional field
studies to test ecological theories [15,16]. Indeed, microbial
microcosms allow to perform ecological experiments during
a few days, where other experimental systems would require
several years. They occupy a limited space, but still contain
billions of individuals and thousands of species, making
them ideal for systematic studies. Moreover, molecular fin-
gerprinting techniques allow to rapidly visualise the commu-
nity, so that dynamics can be followed closely.

The combination of neutral community theory, a sim-
ple model with remarkable predictions, and microbial
microcosms, a laboratory study of ecological communi-
d
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¼
X
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X k¼Y k
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¼
X
~X

X k¼Y k

X
i;j
i6¼j
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¼
X
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"

PijkðX iþ1;X j�1;Y kÞ

�
XX�Y k

X i¼1

XX�X i�Y k

X j¼0
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j
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�
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i
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ties, looks promising. Some work has been reported in
this direction [17,18]. We believe that quantitative tests
of microbial neutral dynamics will involve Simpson diver-
sity. Our contribution could provide the theoretical
framework for this kind of research.
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Appendix A

We show that the marginal distribution for the abun-
dance of one species satisfies an autonomous master equa-
tion. This marginal is defined by

PkðY kÞ ¼
X
~X

X k¼Y k

Pð~X Þ:

Using the master equation of the full model (1),
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The first and second line cancel. For the third line,
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The other lines can be computed similarly. As a result,
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Appendix B

We prove the dynamical equation for the expected value
of f ðXkÞ. Using the master Eq. (1),
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This proves formula (3). One can proceed in a similar way
to prove formula (7).
Appendix C

We compute the dynamical equations for the momenta
of the probability distribution Pð~X Þ. Applying formula
(3) for f ðXkÞ ¼ Xk, we get
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l
d

dt
EXk ¼ �

m
X

EXk þ mpk: ð14Þ
jÞPð~X Þ
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For f ðXkÞ ¼ X2
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Applying formula (7) to f ðXk;X lÞ ¼ XkX l,

1

l
d

dt
EXkX l ¼ � 2m

X
� 2ð1� mÞ

X ðX � 1Þ

� �
EXkX l

þ m� m
X

� �
ðpkEX l þ plEXkÞ: ð18Þ

For f ðXk;X lÞ ¼ X2
kX l,

1

l
d

dt
EX2

kX l ¼ � 3m
X
� 6ð1� mÞ

X ðX � 1Þ

� �
EX2

kX l

þ m� 2m
X

� �
plEX2

k

þ 2m� 4m
X

� �
pkEXkX l

þ m
X
þ 2ð1� mÞ

X � 1

� �
EXkX l

þ m� m
X

� �
pkEX l þ

m
X

plEXk: ð19Þ

For f ðXk;X lÞ ¼ X2
kX2

l ,
1

l
d

dt
EX2

kX2
l ¼ � 4m

X
� 12ð1� mÞ

X ðX � 1Þ

� �
EX2

kX2
l

þ 2m� 6m
X

� �
ðpkEXkX2

l þ plEX2
kX lÞ

þ m
X
þ 2ð1� mÞ

X � 1

� �
ðEX2

kX l þ EXkX2
l Þ

þ m� 2m
X

� �
ðplEX2

k þ pkEX2
l Þ

þ 2m
X
ðpkEXkX l þ plEXkX lÞ

þ 2ð1� mÞ
X ðX � 1Þ EXkX l þ

m
X
ðplEXk þ pkEX lÞ:

ð20Þ
Appendix D

We describe an alternative method to derive dynamical
equations for the momenta. It is based on the characteristic
function

Uð~zÞ ¼ E½zX1
1 � � � z

XN
N � ¼

X
~X

zX 1
1 � � � z

X N
N Pð~X Þ:

A dynamical equation for U can be constructed from the
master Eq. (1),
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or formally,

d

dt
Uð~zÞ ¼

X
i;j

i6¼j

R ðzj � ziÞ
o

ozi
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The equations for the momenta follow by taking deriva-
tives of U. For instance,

o3U
oz2

kozl

����
E

¼ E½XkðXk � 1ÞX l�;

where evaluation in E stands for z1 ¼ . . . ¼ zN ¼ 1.
For our purpose, this method is at least equally labori-

ous as the procedure outlined previously. However, it
shows why the dynamical equations for Z2 are simpler than
for Z1. By way of illustration, we compute EXk and
E½XkðXk � 1Þ�.

Taking the derivative with respect to zk of (21), we
obtain
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When evaluating in E, we see that the second, third and
fifth term drop. The fourth term is antisymmetric for the
interchange i$ j, such that after summing it cancels as
well. We are thus left with
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which is identical to (14).
Taking the derivative of (22) with respect to zk, we

obtain
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Again, evaluating in E and using antisymmetry where
applicable, we get
which follows also from (14) and (15).
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